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The material of today’s lecture is partly adapted from Gabriel Peyré’s lecture notes.

1 Motivating problem: density fitting

In statistics, imaging, or machine learning, one of the most fundamental problems is to
compare a probability distribution ν ∈ P(Rd) arising from measurements to a model,
namely a parameterized family of distributions {µθ, θ ∈ Θ} where typically Θ ⊂ Rp. A
suitable parameter can be obtained by minimizing

min
θ∈Θ

F (θ) := D(µθ, ν)

where D : P(Rd) × P(Rd) → [0,+∞] is a divergence1, i.e. a quantity that quantifies the
discrepancy between µ and ν.

Example 1.1. One can choose D(µ, ν) = W p
p (µ, ν). When ν is an empirical measure

and with p = 2, this is called the Minimum Kantorovich estimator. A drawback of this
discrepancy is that it is computationally expensive, compared to other discrepancies that
we will see in this lecture.

Example 1.2 (Maximum likelihood). Let x1, . . . , xn ∈ Rd be independent samples from
ν. When µθ has a density ρθ with respect to a reference measure σ (e.g. the Lebesgue
measure), the maximum likelihood estimator (MLE) is obtained by solving

min
θ∈Θ
− 1

n

n∑
i=1

log(ρθ(xi)).

This corresponds to using an empirical counterpart of the Kullback-Leibler loss since this
converges towards −

∫
X log(ρθ(x)dν(x) = KL(µθ, ν)−

∫
log(dν/dσ)dν (one can show this

equality provided µθ � ν and ν � σ and all the terms are finite).

The MLE is a statistically optimal estimation procedure in certain cases, but fails:

• when there is no natural reference measure σ;

• when the density ρθ is difficult to compute;

• the resulting objective F is too complicated to minimize.
1In (applied) mathematics, divergence generally refers to a nonnegative quantity D(a, b) that satisfies

D(a, b) = 0 if a = b (such as a distance, a squared distance, the Kullback-Leibler divergence,...)
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Figure 1: Gradient descent algorithm for density fitting. Here (hθ)θ is a parameterized
set of diffeomorphisms, (hθt)#ζ is in green and the target ν is in purple. Image from [3].

Generative models. A typical set-up where all these problems appear is for so-called
generative models, where the parametric measure is written as a push-forward of a fixed
reference measure ζ ∈ P(Z)

µθ = (hθ)#ζ where hθ : Z → Rd.

This leads to the objective function F (θ) = D((hθ)#ζ, ν).
The typical approach to tackle such problems numerically, is the gradient descent

algorithm: initialize θ0 ∈ Θ and define for t > 0,

θt+1 = θt − η∇F (θt)

where η > 0 is a step-size (with potentially a projection on Θ if it is not a vector space).
See Figure 1 for an example. Since F is non-convex, there is no guarantee that F (θt)
converges to the minimum. In practice, the algorithm behaves better when the divergence
is “geometrically faithful” (such as W 2

2 ). Let us give a formula for the gradient under
strong regularity assumptions (which could be relaxed). Here E : µ 7→ D(µ, ν).

Proposition 1.3 (Chain rule for generative models). Assume that E : P2(Rd) → R is
such that for all µ ∈ P2(Rd), there exists a function E′(µ) ∈ C1(Rd) with ∇E′(µ) Lipschitz,
and such that for all ν ∈ P2(Rd),

E(ν)− E(µ) =

∫
Rd
E′(µ)d(ν − µ) + o(W2(µ, ν)).

Assume moreover that h : Rp → L2(ζ;Rd) is (Fréchet) differentiable, with partial deriva-
tives at θ denoted by ∂ihθ ∈ L2(ζ;Rd). Then F : θ 7→ E((hθ)#ζ) is (Fréchet) differentiable
with gradient, for i = 1, . . . , p,

[∇F (θ)]i =

∫
Z
∇E′((hθ)#ζ)(hθ(z))

>∂ihθ(z)dζ(z).

Proof. We first study G : f 7→ E(f#ζ) and show that G is Fréchet differentiable with
differential DG(f)(δf) =

∫
∇E′(f#ζ)(f(z))>δf(z)dζ(z). Then the conclusion follows by

the usual chain rule for Fréchet differentials.
For f, δf ∈ L2(ζ,Rd), we have that W 2

2 (f#ζ, (f + δf)#ζ) 6 ‖δf‖2L2(ζ) by taking
(f, f + δf)#ζ as an admissible transport plan. Thus, by our assumption on E,

E((f + δf)#ζ)− E(f#ζ) =

∫
Z

[E′(f#ζ)(f(z) + δf(z))− E′(f#ζ)(f(z))]dζ(z) + o(‖δf‖)

=

∫
Z
∇E′(f#ζ)(f(z))>δf(z)dζ(z) +O(Lip(∇E′(f#ζ))‖δf‖2) + o(‖δf‖)
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by a Taylor expansion of E′(f#ζ) in the integral. This shows the formula for DG(f) and
concludes the proof.

Example 1.4. Show that if W : Rd×Rd → R is symmetric and differentiable with a Lip-
schitz gradient, then E(µ) :=

∫
W (x, y)dµ(x)dµ(y) satisfies the assumptions of Prop 1.3

with E′(µ)(x) =
∫
W (x, y)dµ(y).

Rest of this lecture We will now introduce various notions of divergences : Csiszár-
divergences, dual norms, MMD and Sinkhorn divergences. Much can be said about each
of them, but we will focus on discussing (i) the divergence property and (ii) the weak
continuity. In the rest of this lecture, we assume that X is a compact metric space.

2 Csiszár divergences

Maybe the most classical way to compare two probability measures are the total variation
norm and the Kullback-Leibler divergence. They belong to the family of Csiszár diver-
gences – also known as f -divergences – which consist in comparing the relative densities
to 1. They are simple to compute between discrete distributions (O(n) operations for
distributions with n atoms) but are not weakly continuous.

Definition 2.1 (f -divergence). Let f : R → R ∪ {+∞} be a convex function. For any
µ, ν ∈ P(X), let µ = dµ

dν ν + µ⊥ be the Lebesgue decomposition of µ with respect to ν.
The divergence is defined by

Df (µ, ν) :=

∫
X
f
(dµ

dν

)
dν + f ′∞(1) · µ⊥(X).

where f ′∞(x) = limt→∞ f(tx)/t ∈ R ∪ {∞} is the asymptotic speed of growth of f in the
direction x.

If f ′∞(1) =∞ then f grows faster than any linear function (f is said superlinear).

Proposition 2.2. Let f be convex such that min f = 0 and arg min f = {1}. Then
Df (µ, ν) > 0 with equality if and only if µ = ν.

Proof. If µ = ν, then dµ/dν = 1 ∈ L1(ν) and µ⊥ = 0, thus Df (µ, ν) =
∫
f(1)dν = 0.

Conversely, if Df (µ, ν) = 0 then µ⊥ = 0 (because f ′∞(1) > f(2)− f(1) > 0) and dµ/dν =
1 ∈ L1(ν) so µ = ν.

Example 2.3 (Kullback-Leibler divergence/relative entropy). This is the Csiszár diver-
gence associated to the function

f(s) =


s log(s)− s+ 1 if s > 0

1 if s = 0

+∞ if s < 0

which is convex, lsc, with unique minimum f(1) = 0. If µ� ν then

Df (µ, ν) =

∫
X

(dµ

dν
log
(dµ

dν

)
− dµ

dν
+ 1
)

dν =

∫
X

log
(dµ

dν

)
dµ = KL(µ, ν)

and Df (µ, ν) = +∞ otherwise since f ′∞(1) = +∞.
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Example 2.4 (Total variation). This is the Csiszár divergence associated to

f(s) =

{
|s− 1| if s > 0

+∞ otherwise

We have f ′∞(1) = 1 thus

Df (µ, ν) =

∫
X

(∣∣dµ
dν
− 1
∣∣dν + dµ⊥

)
(∗)
=

∫
X

d|µ− ν| = |µ− ν|(X)

where (*) comes from the fact that (µ− ν)+ = max{0, dµ/dν − 1}ν + µ⊥ and (µ− ν)− =
max{0, 1−dµ/dν}ν. Beware that in the probability literature there is sometimes a factor
1/2 in front of the definition (so that it takes values in [0, 1] for probability distributions).

In the context of generative models, a drawback of f -divergences is that they are not
weakly continuous : for instance Df (δx, δy) = f ′∞(1) · 1x=y is not continuous at x = y. We
have however weak lower-semicontinuity.

Proposition 2.5. If f : R → R ∪ {+∞} is convex, lsc, and not identically +∞, then
Df (µ, ν) is (jointly) convex and weakly lower-semicontinuous and one has

Df (µ, ν) = sup
ϕ,ψ∈C(X)

∫
ϕdµ+

∫
ψdν s.t. ϕ(x) + f∗(ψ(x)) 6 0, ∀x ∈ X

where f∗ : s 7→ supu∈R us− ·f(u) is the convex conjugate of f .

Proof idea. This is a special case of a more general property concerning integral functionals
of perspective functions. Let ψf : R+×R→ R∪{+∞} be the perspective of f , defined as

ψf (t, x) =


t · f(x/t) if t > 0

f ′∞(x) if t = 0

+∞ if t < 0

By direct computation, it can be seen ψf is the convex conjugate of the (convex and lsc)
function of (s, y) ∈ R2 that is worth 0 if s+f∗(y) 6 0 and +∞ otherwise (exercise). Thus
ψf is convex and lsc. For any σ ∈ P(X) such that µ, ν � σ, it holds

Df (µ, ν) =

∫
ψf
(dν

dσ
,

dµ

dσ

)
dσ =

∫ (
sup

ψ+f∗(ϕ)60
ψ

dν

dσ
+ ϕ

dµ

dσ

)
dσ

(∗)
= sup

ϕ,ψ∈C(X)
ψ+f∗◦ϕ60

∫
ϕdµ+

∫
ψdν

To exchange
∫

and sup, we have used a (non-trivial) interversion theorem [5, Thm. 6].
The convexity and weak lsc follow directly by this dual representation. See [1, Sec. 2.6]
for a direct proof of lower-semicontinuity.

Example 2.6 (Total variation). For the total variation, we have by direct computation
f∗(s) = max{−1, s} for s 6 1 and f∗(s) = +∞ for s > 1, so we recover the usual dual
characterization

|µ− ν|(X) = sup
ϕ∈C(X)
ϕ61

∫
ϕdµ−

∫
max{−1, ϕ}dν = sup

ϕ∈C(X)
‖ϕ‖∞61

∫
ϕd(µ− ν).
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3 Integral probability metrics (dual norms)

3.1 General case

For a symmetric set B of measurable functions from X to R and α ∈ M(X) a signed
measure, let

‖α‖B := sup
f∈B

∫
X
f(x)dα(x) (3.1)

The divergences associated to such dual norms, obtained with α = µ− ν, for µ, ν ∈ P(X)

DB(µ, ν) := ‖µ− ν‖B = sup
f∈B

∫
f(x)d(µ(x)− ν(x))

are often called “integral probability metrics”, see [6] (or also “maximum mean discrepancy”
but the latter is sometimes reserved to the special case discussed later).

Proposition 3.1. If B is symmetric, bounded in sup-norm and contains 0, then ‖ · ‖B is
a seminorm onM(X) (it is nonnegative, positively homogeneous and subadditive).

Example 3.2 (Total variation). It is recovered with B = {f ∈ C(X) ; ‖f‖∞ 6 1}.

Example 3.3 (Wasserstein-1). It is the integral probability metric induced by the set of
1-Lipschitz functions B = {f ∈ C(X);Lip(f) 6 1}.

Example 3.4 (Flat norm and the Dudley metric). If the set B is bounded in ‖ · ‖∞, then
‖ · ‖B is a norm on the whole space M(X) of signed measures. This is not the case for
‖ · ‖W1 , which is only finite for α such that

∫
X dα = 0. This can be alleviated by imposing

a bound on the value of the potential f , in order to define for instance the flat norm

B = {f ; Lip(f) 6 1 and ‖f‖∞ 6 1}

It is similar to the Dudley metric, which uses

B = {f ; Lip(f) + ‖f‖∞ 6 1}.

The following proposition shows that to metrize the weak convergence, the set B should
not be too large nor too small.

Proposition 3.5. Let (αk)k be a bounded (for total variation ‖ · ‖TV ) sequence inM(X).

(i) If C(X) ⊂ span(B)
‖·‖∞, i.e. if the span of B is dense in the set of continuous

functions endowed with the sup-norm), then ‖αk − α‖B → 0 implies αk ⇀ α

(ii) If B ⊂ C(X) is compact (i.e. if it is closed, uniformly continuous and bounded) then
αk ⇀ α implies ‖αk − α‖B → 0.

Proof. (i) If ‖αk−α‖B → 0 then by duality, for any f ∈ B, since 〈f, αk−α〉| 6 ‖αk−α‖B
then 〈f, αk〉 → 〈f, α〉. By linearity, this extends to span(B) and then to span(B)

‖·‖∞ since
|〈f, αk〉 − 〈f ′, αk〉| 6 ‖f − f ′‖∞ supk ‖αk‖TV .

(ii) We assume that αk ⇀ α and we consider a subsequence αnk such that

‖αnk − α‖B → lim sup
k
‖αk − α‖B.
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Since B is compact, the maximum appearing in the definition of ‖αnk − α‖B is reached,
so there exists some f ∈ B such that 〈αnk − α, fnk〉 = ‖αnk − α‖B. By compactness, we
can again extract a subsequence fnk (not relabelled for simplicity) that converges to some
f ∈ B ⊂ C(X). One has

‖αnk − α‖B = 〈αnk − α, f〉+ 〈αnk , fnk − f〉 − 〈α, fnk − f〉 → 0

because αnk − α ⇀ 0 and ‖fnk − f‖∞ → 0.

Observe that this proof is a direct generalization of our proof that W1 metrizes the
weak topology on a compact X in Lecture 4.

3.2 Kernel Maximum Mean Discrepancies

We now describe an important class of integral probability metrics.

Definition 3.6 (Positive definite kernel). A symmetric function k : X ×X → R is said
to be positive definite (p.d.) if for any n > 1, for any family x1, . . . , xn ∈ X the matrix
(k(xi, xj))i,j is positive semi-definite2, i.e. for all r ∈ Rn,

n∑
i,j=1

rirjk(xi, xj) > 0. (3.2)

The kernel is said to be conditionally positive definite if Eq. (3.2) holds for all zero mean
vectors r, i.e. such that

∑
i ri = 0.

Definition 3.7 (MMD). Given a continuous and positive semi-definite kernel k : X×X →
R, we define for α ∈M(X) (finite signed Borel measure)

‖α‖2k =

∫∫
X
k(x, y)dα(x)dα(y).

The squared MMD between µ, ν ∈ P(X) is then

‖µ− ν‖2k =

∫∫
kdµ⊗ µ+

∫∫
kdν ⊗ ν − 2

∫∫
kdµ⊗ ν.

This definition as a squared quantity makes sense thanks to the following result.

Proposition 3.8. If k ∈ C(X2) is conditionally p.d.,
∫∫

kdα⊗ α > 0 if
∫

dα = 0.

Proof. Let αn ∈M(X) be measures with finite support and zero mass such that αn ⇀ α.
Since αn⊗αn ⇀ α⊗α (Lem.2.2 from Lect. 5), we have 0 6

∫∫
kdαn⊗αn →

∫∫
kdα⊗α.

MMD as a dual norm. To develop a finer understanding of MMD, one needs to
develop the theory of Reproducible Kernel Hilbert Spaces (RKHS). Since this is beyond
the scope of this course, we limit ourselves to showing a link with dual norms via the
following result.

Theorem 3.9 (Aronzsajn). k is a p.d. kernel on the set X if and only if there exists a
Hilbert space H and a mapping Φ : X → H such that k(x, x′) = 〈Φ(x),Φ(x′)〉H.

2It would be more consistant to call such a kernel “positive semi-definite” but we are using the convention
from the literature [7].
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As a consequence the MMD consists in embeddingM(X) into a Hilbert space H via
the kernel mean embedding µ 7→

∫
Φdµ, since ‖µ − ν‖k = ‖

∫
Φdµ −

∫
Φdν‖H. We also

have
‖α‖k = sup

‖h‖H61

〈
h,

∫
Φdα

〉
= sup

f∈B

∫
fdα

where B = {x 7→ 〈h,Φ(x)〉 ; ‖h‖H 6 1} so it is an integral probability metric.

Metrizing weak convergence. It can be shown that if k is universal (i.e. (i) of
Prop. 3.5) holds), continuous and conditionally positive definite then ‖ · ‖k metrizes weak
convergence in P(X), see e.g. [?]. Examples of such kernels on Rd are:

• the Gaussian kernel k(x, y) = e−
‖y−x‖22

2σ2 with σ > 0;

• the distance kernel k(x, y) = −dist(x, y) (its MMD is called the “Energy distance”);

Discrete case. In the special case of discrete measures µ =
∑m

i=1 aiδxi and ν =∑n
j=1 bjδyj then we have

‖µ− ν‖2k =
∑
i,i′

aiai′k(xi, xi′) +
∑
j,j′

bjbj′k(yj , yj′)− 2
∑
i,j

aibjk(xi, yj).

This requires O((m+ n)2) operations to compute.

4 Sinkhorn divergences

Recall that W p
p are often good choices of divergence, but are computationally expansive

(another downside, not discussed in this course, is that they are difficult to estimate from
random samples, in particular in high dimension [8]). Next, we build divergences from
entropy regularized optimal transport.

4.1 Reminders on entropy regularized OT

With c ∈ C(X2), the definition of entropy regularized optimal transport is

Tc,λ(µ, ν) := min
γ∈Π(µ,ν)

∫
c(x, y)dγ(x, y) + λKL(γ;µ⊗ ν)

Note that this definition differs from the one in Lecture 3 by a constant λ (because the
quantity H from Lecture 3 differs from KL by 1). We recall the following facts from
Lecture 3:

• (Duality)

Tc,λ(µ, ν) = sup
ϕ,ψ∈C(X)

∫
ϕ(x)dµ(x)+

∫
ψ(y)dν(y)+λ

(
1−
∫∫

e(ϕ(x)+ψ(y)−c(x,y))/λdµ(x)dν(y)
)

• (Optimality conditions) There exists maximizers (ϕλ, ψλ) and a unique minimizer
γλ linked by the optimality condition

dγλ(x, y) = e(ϕλ(x)+ψλ(y)−c(x,y))/λdµ(x)dν(y)

It follows in particular that

Tc,λ(µ, ν) =

∫
ϕλdµ+

∫
ψλdν.
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4.2 Is Tc,λ a suitable divergence?

Proposition 4.1 (Interpolation properties). For µ, ν ∈ P(X) and c ∈ C(X×X), it holds

Tc,λ(µ, ν)→

{
Tc(µ, ν) := Tc,0(µ, ν) as λ→ 0∫
c(x, y)dµ(x)dν(y) as λ→∞

Moreover, denoting γλ the unique minimizer for Tc,λ, it holds γλ ⇀ µ⊗ ν as λ→∞.

Proof. (i) We first study the limit λ→ 0. Since KL > 0, it holds Tc,λ > Tc. To prove the
reverse inequality as λ→ 0, let γ0 ∈ Π(µ, ν) be optimal for Tc(µ, ν). For any ε > 0, there
exists γε ∈ Π(µ, ν) such that |

∫
cdγ −

∫
cdγε| 6 ε and KL(γε, µ⊗ ν) < +∞. One possible

way to build γε is to take (Qi) a partition of X into sets of diameter less than Lip(c)/(2ε)
and to take

γε =
∑
i,j

γ0(Qi ×Qj)
µ(Qi)ν(Qj)

d(µ|Qi ⊗ ν|Qj )

(Exercise: show that γε indeed satisfies our requirements). It follows that

Tc,λ 6 ε+ λKL(γε, µ⊗ ν) −→
λ→0

ε.

As ε > 0 was arbitrary, this shows that Tc,λ(µ, ν) −→
λ→0

Tc(µ, ν).

(ii) Now we study the limit λ → ∞. First, it is clear that Tc,λ(µ, ν) 6
∫
cdµ ⊗ ν

since µ ⊗ ν ∈ Π(µ, ν). Let (λk)k be a positive sequence that diverges to +∞, and let γk
be the corresponding sequence of (unique) minimizers for Tc,λk . By optimality, we have∫
cdγk + λk KL(γk, µ⊗ ν) 6

∫
cdµ⊗ ν and thus

KL(γk, µ⊗ ν) 6
1

λk

(∫
cdµ⊗ ν −

∫
cdγk

)
→ 0.

Moreover, by compactness of Π(µ, ν) we can extract a converging subsequence γnk ⇀
γ∞. Since KL is weakly lower-semicontinuous (Prop. 2.5), it holds

KL(γ∞, µ⊗ ν) 6 lim inf
k→∞

KL(γnk , µ⊗ ν) = 0

Hence γ∞ = µ⊗ ν hence the conclusion.

One could imagine replacing Wasserstein by its entropy regularized version, but the
previous result shows that when λ is large, Tc,λ behaves like an inner product rather than
like a divergence. In particular, even for standard costs c = dist(x, y)p, µ 7→ T λc (µ, ν) is in
general not minimized at µ = ν.

Corollary 4.2. Let ν ∈ P(X) be such that arg miny∈X
∫
c(x, y)dν(y) is a singleton, de-

noted x∗ and let µλ ∈ arg minµ∈P(X) Tc,λ(µ, ν). Then as λ→∞, one has µλ ⇀ δx∗ .

Proof. By assumption, the continuous function f defined by f(x) =
∫
c(x, y)dν(y) ad-

mits a unique minimizer x∗ ∈ X. It follows that for any r > 0, there exists ε > 0
such that |f(x) − f(x∗)| 6 ε implies dist(x, x∗) 6 r (to see this, observe that g(r) :=
minx∈X,dist(x,x∗)>r f(x) satisfies g(r) > f(x∗) and limr→0+ g(r) = f(x∗)).

Now consider an increasing unbounded sequence (λk)k and let (µk)k be the corre-
sponding set of minimizers. Taking δx∗ as a competitor, the optimality of µk together
with Prop. 4.1 implies that for any ε > 0, there exists k0 such that for k > k0,∫

fdµk =

∫
cdµk ⊗ ν 6

∫
f(x∗) + ε
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Thus for any r > 0, there exists k′0 such that for k > k′0, µk(Br(x∗)) > 1 − r from which
we deduce that µk converges weakly to δx∗ .

For instance, when c(x, y) = 1
2‖y − x‖

2
2, then µλ converges to a Dirac mass located at

the mean
∫
xdν(x) of ν.

4.3 Debiased quantity: the Sinkhorn divergence

Thinking of −Tc,λ as an inner product suggests to define

Sc,λ(µ, ν) := Tc,λ(µ, ν)− 1

2
Tc,λ(µ, µ)− 1

2
Tc,λ(ν, ν)

From a computational aspect, the debiasing terms add an essentially negligible cost be-
cause the Sinkhorn iterations for those problems are well-conditioned. We can already see
that these correction terms allow to correct the asymptotic behavior when λ is large.

Proposition 4.3 (Interpolation properties). For µ, ν ∈ P(X) and c ∈ C(X ×X) it holds

Sc,λ(µ, ν) −→

{
Tc(µ, ν) as λ→ 0
1
2‖µ− ν‖

2
−c as λ→∞

where ‖ · ‖−c is the MMD associated to the kernel −c.

Proof. This is immediate from Proposition 4.1 which deals with Tc,λ. In particular, when
λ→∞, it shows that

Sc,λ(µ, ν)→
∫
cdµ⊗ ν − 1

2

∫
cdµ⊗ µ− 1

2

∫
cdν ⊗ ν

which is precisely the definition of 1
2‖µ− ν‖

2
−c.

One can show that under regularity assumptions over µ and ν and for the cost c(x, y) =
‖y − x‖22 on Rd that |Sc,λ − Tc| = O(λ2), see [2]. Finally, under assumptions on the cost,
we can show that µ 7→ Sc,λ(µ, ν) is minimized at ν.

Proposition 4.4 (Positive semi-definiteness). If k(x, y) = e−c(x,y)/λ is a positive semidef-
inite kernel, then Sc,λ(µ, ν) > 0 with equality if µ = ν.

Proof. In the following, we fix λ > 0 and denote (ϕ,ϕ) a solution for Tc,λ(µ, µ) (there
exists a solution of this form by symmetry and concavity of the dual problem) and (ψ,ψ)
a solution for Tc,λ(ν, ν). Using the suboptimal function (ϕ,ψ) in the dual maximization
problem, one obtains

Tc,λ(µ, ν) >
∫
ϕdµ+

∫
ψdν + λ

(
1−

∫ ∫
e(ϕ⊕ψ−c)/λdµ⊗ ν

)
Using the fact that Tc,λ(µ, µ) = 2

∫
ϕdµ and Tc,λ(ν, ν) = 2

∫
ψdν, this implies

1

λ
Sc,λ(µ, ν) > 1−

∫ ∫
e(ϕ⊕ψ−c)/λdµ⊗ ν = 1− 〈µ̃, ν̃〉k

with µ̃ = eϕ/λµ, ν̃ = eψ/λν and 〈·, ·〉k is the positive semi-definite inner product associated
with the kernel k := e−c/λ. By the optimality condition satisfied by ϕ, it holds

‖µ̃‖2k =

∫ ∫
e(ϕ(x)+ϕ(y)−c(x,y))/λdν(x)dν(y) = 1

and similarly ‖ν̃‖2k = 1. So by Cauchy-Schwartz inequality, one has 〈µ̃, ν̃〉k 6 1 and finally
Sc,λ(µ, ν) > 0.
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In case e−c/λ is a conditionally positive definite and universal kernel, we can further
show that Sc,λ(µn, µ)→ 0 if and only if µn ⇀ µ, see [4].

5 Practical session

The last practical session (taken from Gabriel Peyré’s numerical tours website) is at
the following link: https://nbviewer.jupyter.org/github/gpeyre/numerical-tours/
blob/master/python/optimaltransp_6_entropic_adv.ipynb. Only exercises 4 and 5
are not already solved, but take time to understand each block of code. For those
who do not wish to use Jupyter, you may of course paste the code in a different ter-
minal. Note that there is a sign mistake before cell 11: one should read + KL instead
of −KL and P is the solution to entropy regularized optimal transport. For those
who wish to go further on this topic, you can check out Jean Feydy’s great tutorial
http://www.math.ens.fr/~feydy/Teaching/DataScience/gradient_flows.html.
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