
Lecture 2: Optimality Conditions and Consequences

Lénaïc Chizat

February 24, 2021

The material of today’s lecture comes from [4, 6] and the lecture notes of Q. Mérigot.

1 Introduction

Let X and Y be compact metric spaces, µ ∈ P(X), ν ∈ P(Y ) and c : X × Y → R a
continuous cost function. In Lecture 1, we have defined the Kantorovich problem

Tc(µ, ν) := inf
γ

{∫
X×Y

c(x, y)dγ(x, y) | γ ∈ Π(µ, ν)
}
. (KP)

where Π(µ, ν) := {γ ∈M+(X×Y ) | (πX)#γ = µ and (πY )#γ = ν} is the set of transport
plans between µ and ν. Rewriting the marginal constraints leads to the problem

inf
γ>0

sup
ϕ,ψ

{∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y) +

∫
X×Y

(
c(x, y)− ϕ(x)− ψ(y)

)
dγ(x, y)

}
.

where ϕ ∈ C(X), ψ ∈ C(Y ) and γ ∈ M+(X × Y ). After formally inverting the inf-sup,
and minimizing over γ, we get the dual problem

T dualc (µ, ν) := sup
ϕ,ψ

{∫
X
ϕdµ+

∫
Y
ψdν | ϕ(x) + ψ(y) 6 c(x, y), ∀(x, y) ∈ X × Y

}
. (DP)

Let us recall some results from Lecture 1:

• There exists minimizers to (KP) in P(X × Y ).

• There exists maximizers to (DP) in C(X)× C(Y ).

• It holds T dualc (µ, ν) 6 Tc(µ, ν).

• We also recall the definition of c-transforms for ϕ : X → R and ψ : Y → R:

ϕc(y) = inf
x∈X

c(x, y)− ϕ(x) ψc(x) = inf
y∈Y

c(x, y)− ψ(y).

It always holds ϕcc > ϕ. If ϕ(x) = ψc(y) for some ψ, then ϕ is said c-concave and
it holds ϕcc = ϕ (exercise, or see [4, Prop. 1.3.4]).

Today, we will show strong duality, derive primal-dual optimality conditions and ex-
plore their consequences. We assume that X and Y are compact for the sake of simplicity,
but most statement have their counterpart in non-compact spaces.
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2 Strong duality

2.1 The case of discrete optimal transport

We start with the case of finite discrete probability measures, which is important because:

• It often comes up in applications (e.g. optimal matching in economy);

• Numerical methods for the continuous case often resort to discretization;

• It is a convenient way to study the general case, through density arguments.

Proposition 2.1 (Duality, discrete case). If µ and ν are finitely supported, then T dualc (µ, ν) =
Tc(µ, ν).

Proof. Let us write µ =
∑m

i=1 µiδxi and ν =
∑n

j=1 νjδyj where all µi and νj are strictly
positive. Consider the linear program

T lpc (µ, ν) := min
{∑

i,j

c(xi, yj)γi,j | γi,j > 0,
∑
j

γi,j = µi,
∑
i

γi,j = νj

}
.

which admits a solution that we denote γ. By linear programming duality (which is
standard in the finite dimensional case, see e.g. [1, Sec. 5.2] or [3, Sec. 37.3]), we have
strong duality

T lpc (µ, ν) = max
{∑

i

ϕiµi +
∑
j

ψjνj | ϕi + ψj 6 c(xi, yj)
}

and at optimality γi,j(ci,j − ϕi − ψj) = 0 (the complementary slackness in Karush-Kuhn-
Tucker theorem). Let us now build a pair (ϕ,ψ) of functions which is feasible for the dual
problem and that takes the value (ϕi, ψj) at (xi, yj). For this purpose, we introduce

ψ(y) =

{
ψi if y = yi,

+∞ otherwise,

and let ϕ = ψc ∈ C(X). For i0 ∈ [n], there exists j0 ∈ [n] such that γi0,j0 > 0 and thus,
by complementary slackness, ϕi0 + ψj0 = c(xi0 , yj0) and thus

ϕ(xi0) = inf
y∈Y

(
c(xi0 , y)− ψ(y)

)
= min

j∈[n]

(
c(xi0 , yj)− ψj

)
= c(xi0 , yj0)− ψj0 = ϕi0 .

Similarly, one can show that ϕc(yj) = ψj for all j ∈ [n]. Finally, we define γ =∑
i,j γi,jδ(xi,yj) ∈ Π(µ, ν). Since we have built admissible primal γ and dual (ϕ,ψ) vari-

ables for which the primal and dual objective agree, this concludes the proof.

2.2 Density of discrete measures

In order the prove the general case, we will use the density of discrete measures for the
weak topology and a stability property of optimal dual and primal solutions.

Lemma 2.2 (Density of discrete measures). Let X be a compact space and µ ∈ P(X).
Then, there exists a sequence of finitely supported probability measures weakly converging
to µ.
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Proof. By compactness, for any ε > 0, there exists N points x1, . . . , xn such that X ⊂⋃
iB(xi, ε). We introduce the partition K1, . . . ,Kn of X defined recursively by Ki =

B(xi, ε) \K1 ∪ . . .Ki−1 and

µε :=

n∑
i=1

µ(Ki)δxi .

To prove weak convergence of µε to µ as ε → 0, take ϕ ∈ C(X). By compactness of X,
ϕ admits a modulus of continuity ω, i.e. an increasing function satisfying limt→0 ω(t) = 0
and |ϕ(x)− ϕ(y)| 6 ω(dist(x, y)). Using that diam(Ki) 6 ε, we get∣∣∣ ∫ ϕdµ−

∫
ϕdµε

∣∣∣ 6 n∑
i=1

∫
Ki

|ϕ(x)− ϕ(xi)|dµ(x) 6 ω(ε).

We deduce that µε weakly converges to µ (remember that for measures on a compact
space, narrow, weak and weak* topologies are the same).

Note that we even have weak density in P(X) of empirical measures, that is measures of
the form 1

n

∑n
i=1 δxi for n ∈ N∗ and xi ∈ X. Indeed, take x1, . . . , xn independent random

variables with distribution µ. Then the uniform law of large numbers (a.k.a. Varadarajan’s
theorem) states that 1

n

∑n
i=1 δxi weakly converges to µ with probability 1.

2.3 Strong duality for the general case

Theorem 2.3 (Duality, general case). Let X,Y be compact metric spaces and c ∈ C(X ×
Y ). Then Tc(µ, ν) = T dualc (µ, ν).

Proof. By Lemma 2.2, there exists a sequence µk ∈ P(X) (resp. νk ∈ P(Y )) of finitely
supported measures which converge weakly to µ (resp. ν). By Proposition 2.1 and its proof,
there exists for all k, γk and (ϕk, ϕ

c
k) with ϕk c-concave which are optimal primal-dual

solutions to Tc(µk, νk) and such that γk is supported on the set

Sk := {(x, y) ∈ X × Y | ϕk(x) + ϕck(y) = c(x, y)}.

Adding a constant if necessary, we can also assume that ϕk(x0) = 0 for some point
x0 ∈ X. As in the previous lecture, we see that {ϕk} and {ϕck} are uniformly continuous
and bounded so by Ascoli-Arzelà theorem converge uniformly to some (ϕ,ψ) up to a
subsequence. We easily have that ϕ⊕ψ 6 c, so (ϕ,ψ) is feasible for the dual problem (in
fact uniform convergence implies that ψ = ϕc, although we will not use this fact here).

By weak compactness of P(X × Y ), we can assume that the sequence γk weakly
converges to γ ∈ Π(µ, ν). Moreover, by Lemma 2.4, every pair (x, y) ∈ spt(γ) can be
approximated by a sequence of pairs (xk, yk) ∈ spt(γk) with limk→∞(xk, yk) = (x, y). One
has c(xk, yk) = ϕk(xk) + ϕck(yk), which gives at the limit c(x, y) = ϕ(x) + ψ(y). Thus we
have

Tc(µ, ν) 6
∫
cdγ =

∫ (
ϕ(x) + ψ(y)

)
dγ(x, y) =

∫
ϕdµ+

∫
ψdν 6 T dualc (µ, ν)

Since we already know that T dualc (µ, ν) 6 Tc(µ, ν) this is sufficient to conclude.

Lemma 2.4. If µn converges weakly to µ, then for any point x ∈ spt(µ) there exists a
sequence xn ∈ spt(µn) converging to x.
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Proof. Consider x ∈ spt(µ). For any k ∈ N, consider the function ϕk(z) = max{0, 1 −
kdist(x, z)} which is continuous. Then

lim
n→∞

∫
ϕkdµn = ϕkdµ > 0.

Thus, there exists nk such that for any n > nk,
∫
ϕkdµn > 0. This implies the existence

of a sequence (x
(k)
n ) ∈ X such that x(k)n ∈ spt(µn) and dist(x

(k)
n , x) 6 1/k for n > nk. By a

diagonal argument, we build the sequence xn = xknn where kn = max{k | k = 0 or n > nk}.
Since by construction kn →∞, we have xn → x.

We conclude this section with a few remarks:

• Note that the proof of Thm. 2.3 also shows existence of primal-dual optimizers
(γ, (ϕ,ψ)). However, if one only wishes to prove this existence result, the discretiza-
tion step is superfluous, see the lecture notes from last week.

• There exists many other routes to prove strong duality in this context. Other ap-
proaches include:

– Given an optimal transport plan, directly building a dual pair (ϕ,ψ) that sat-
isfies the optimality criterion of Prop. 3.2, see [4, 1.6.2]. Upside: this does not
involve any abstract convex duality argument. Downside: the construction is
a bit tedious and rarely used for other purposes (in particular it a priori does
not lead to an efficient algorithm to build dual variables).

– Applying convex duality directly in the duality between continuous functions
(endowed with sup-norm topology) and signed Borel measures (endowed with
the weak* topology) - e.g. by applying Fenchel-Rockafellar duality theorem [5],
see also [4, 1.6.3] for a different strategy. Upside: this is a quick proof, since the
main step is checking the constraint qualification. Downside: it relies on the
heavy (but powerful) machinery of convex duality in infinite dimensional spaces
and the conclusion may seem to come out of the blue for who isn’t familiar with
this theory.

The approach chosen here (see [2] for a reference) also relies on convex duality but
only the finite dimensional version. It also showcases the discretization approach
and illustrates the point of view that optimal transport theory is about “the (weak)
closure of point cloud matching theory”.

3 Optimality conditions and stability

Let us write down three important properties that follow from our previous results. First,
remark that the proof of Theorem 2.3 can be used to prove the following stability property
(the modifications are left as an exercise).

Proposition 3.1 (Stability). Let X,Y be compact metric spaces. Consider (µk)k∈N and
(νk)k∈N in P(X) and P(Y ) converging weakly to µ and ν respectively and (ck)k∈N in
C(X × Y ) converging uniformly to c.

• If γk is a minimizer for Tck(µk, νk) then, up to subsequences, (γk) converges weakly
to a minimizer for Tc(µ, ν).
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• Let (ϕk, ϕ
ck
k ) be a maximizer for T dualck

(µk, νk) and be such that ϕk is ck-concave and
ϕk(x0) = 0. Then, up to subsequences, (ϕk, ϕ

ck
k ) converges uniformly to (ϕ,ϕc) a

maximizer for T dualc (µ, ν) with ϕ c-concave satisfying ϕ(x0) = 0.

Let us emphasize on the optimality conditions, which are just a continuous version of
complementary slackness.

Proposition 3.2 (Optimality conditions). For γ ∈ Π(µ, ν) and (ϕ,ψ) ∈ C(X) × C(Y )
satisfying ϕ⊕ ψ 6 c, the following are equivalent:

(i) ϕ(x) + ψ(y) = c(x, y) holds γ-almost everywhere.

(ii) γ is a minimizer of (KP), (ϕ,ψ) is a maximizer of (DP).

Proof. Assuming (i), we have

Tc(µ, ν) 6
∫
cdγ =

∫ (
ϕ(x) + ψ(y)

)
dγ(x, y) =

∫
ϕdµ+

∫
ψdν 6 T dualc (µ, ν)

Since we already know that T dualc (µ, ν) 6 Tc(µ, ν) this implies (ii). To show (ii) ⇒ (i),
notice that Theorem 2.3 and (ii) imply

0 =

∫
c(x, y)dγ(x, y)−

∫
ϕ(x) + ψ(y)dγ(x, y) =

∫ (
c(x, y)− ϕ(x)− ψ(y)

)
dγ(x, y).

Since the last integrand is nonnegative, it must vanish γ-almost everywhere.

Another useful notion attached to optimal transport solutions is that of cyclical mono-
tonicity.

Definition 3.3 (Cyclical monotonicity). A set S ⊂ X × Y is said c-cyclically monotone
if for any n ∈ N∗ and (xi, yi)

n
i=1 ∈ Sn, it holds

n∑
i=1

c(xi, yi) 6
n∑
i=1

c(xi, yi+1) (3.1)

with the convention yn+1 = y1.

Note that Eq. (3.1) is equivalent to requiring
∑n

i=1 c(xi, yi) 6
∑n

i=1 c(xi, yσ(i)) for any
permutation σ of {1, . . . , n}, since one can chose the ordering freely when selecting the n
points (xi, yi)

n
i=1 ∈ Sn.

Proposition 3.4. Let X,Y be compact metric spaces, c ∈ C(X × Y ) and γ ∈ Π(µ, ν) an
optimal transport plan between µ ∈ P(X) and ν ∈ P(Y ). Then spt(γ) is c-cyclically mono-
tone.

This result is rather direct in the discrete case and can also be proved without duality
in the general case but our duality results lead to a straighforward proof.

Proof. Let (xi, yi)
n
i=1 be n points in spt(γ). By Prop. 3.2, we know that there exists (ϕ,ψ)

such that ϕ(xi) + ψ(yj) 6 c(xi, yj) for all i, j and such that ϕ(xi) + ψ(yi) = c(xi, yi) for
all i. Thus∑

i

c(xi, yi+1)−
∑
i

c(xi, yi) >
∑
i

(
ϕ(xi) + ψ(yi+1)

)
−
∑
i

(
ϕ(xi) + ψ(yi)

)
= 0.
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Remark 3.5. The cautious reader might have noticed that Prop. 3.2 only guarantees that
γ{(x, y) ∈ X × Y ; ϕ(x) + ψ(y) < c(x, y)} = 0 (*) while we used a different property.
But (*) and the continuity of c, ϕ and ψ implies that if ϕ(x) + ψ(y) < c(x, y) then there
exists a nonempty open ball around (x, y) with 0 mass under γ, i.e. (x, y) /∈ spt(γ) thus
ϕ(x) + ψ(y) = c(x, y) for all (x, y) ∈ spt(γ) (which is the property use above).

Remark 3.6. A stronger property in fact holds: any c-cyclically monotonous set is con-
tained in a set of the form {(x, y) ∈ X × Y ;ϕ(x) + ϕc(y) = c(x, y)} for some c-concave
function ϕ. This implies that any γ ∈ Π(µ, ν) such that spt(γ) is c-cyclically monotone is
optimal.

4 Applications

Let us exploit the optimality conditions and duality results to describe the behavior of
optimal transport in specific situations.

4.1 Optimal transport on the real line

Theorem 4.1 (Optimality of the monotone transport plan). Let µ, ν be two probability
measures on R, and c(x, y) := h(x − y) where h is strictly convex. Then, there exists a
unique γ ∈ Γ(µ, ν) satisfying the two following statements, which are equivalent:

(i) γ is optimal for the Kantorovich problem;

(ii) spt(γ) is monotone in the sense

∀(x, y), (x′, y′) ∈ spt(γ), (x′ − x) · (y′ − y) > 0.

Proof. We first prove that there exists at most one transport plan satisfying (ii). Recall
that a probability measure on R2 is uniquely defined from the values γ((−∞, a]×(−∞, b])
for any a, b ∈ R. This follows from the fact that such sets generate the Borel σ-algebra.
Consider A = (−∞, a]× (b,+∞) and B = (a,+∞)× (−∞, b]. Then, by monotonicity of
spt(γ) one cannot have γ(A) > 0 and γ(B) > 0 at the same time. Hence,

γ(]−∞, a]× ]−∞, b]) = min(γ((]−∞, a]× ]−∞, b]) ∪A), γ((]−∞, a]× ]−∞, b]) ∪B))

= min(µ(]−∞, a]), ν(]−∞, b])).

This shows that γ(]−∞, a]× (]−∞, b]) is uniquely defined from µ, ν, so that γ is unique.
Now by Proposition 3.4, we know that for an optimal transport plan γ and (xi, yi)

2
i=1 ∈

spt(γ)2, it holds
c(x0, y0) + c(x1, y1) 6 c(x0, y1) + c(x1, y0).

We conclude with c(x, y) = |x− y|2, the case of a general strictly convex function can be
found in Chapter 2 of [4]. Expanding the squares and simplifying, the above inequality
can be rewritten as

−x0y0 − x1y1 6 −x0y1 − x1y0,

giving exactly (x0 − x1)(y0 − y1) > 0 as desired.

While in this proof cyclical monotonicity of order 2 was enough to conclude, we warn
the reader that this is in general not the case in higher dimension.
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Remark 4.2 (Book-shifting). If c(x, y) = |x− y| with the Euclidean norm, the solution
to the optimal transport problem might be non-unique. Take for instance µ = λ|[0,1] and
ν = λ|[ε,1+ε] for some ε > 0. Then, the maps T : x 7→ x + ε and T ′(x) = x if x ∈ [ε, 1]

and T ′(x) = x + 1 if x ∈ [0, ε] are both optimal with the same cost. (NB: proving the
optimality of a transport map is in general a difficult matter, to which Kantorovich duality
provides an answer.)

It turns out that the unique monotone transport map can be built using quantile
functions. Given µ ∈ P(R), define its cumulative distribution function Fµ : R→ [0, 1] and
its quantile function Qµ : [0, 1]→ R by:

Fµ(x) = µ((−∞, x]) and Qµ(t) = inf{x ∈ R | Fµ(x) > t}.

As a simple consequence of these definitions, we have

Qµ(t) 6 x⇔ Fµ(x) > t and Qµ(t) > x⇔ Fµ(x) < t. (4.2)

Proposition 4.3 (Characterization of the monotone transport plan). The unique mono-
tone transport plan in Π(µ, ν) is given by γQ = (Qµ, Qν)#λ. In particular, for c(x, y) =
h(y − x) with h strictly convex, we have the following explicit optimal transport cost

Tc(µ, ν) =

∫ 1

0
h(Qν(t)−Qµ(t))dt

Proof. First, let us prove that Qµ is a transport map between the Lebesgue measure on
[0, 1] (denoted λ) and µ. Using Eq. (4.2), we write

(Qµ)#λ|[0,1](]−∞, a]) = λ
(
{t ∈ [0, 1] | Qµ(t) 6 a}

)
= λ

(
{t ∈ [0, 1] | Fµ(a) > t}

)
= Fµ(a),

which proves that (Qµ)#λ|[0,1] = µ using the characterization of a measure through its
CFD. It directly follows that γQ ∈ Π(µ, ν). Then, let us compute

γQ(]−∞, a]× ]−∞, b]) = λ
(
{t ∈ [0, 1] | Qµ(t) 6 a, Qν(t) 6 b}

)
= λ

(
{t ∈ [0, 1] | Fµ(a) > t, Fν(b) > t}

)
= min{Fµ(a), Fν(b)}

and we recover the characterization of the monotone transport plan in the proof of Theo-
rem 4.1.

4.2 Duality formula for the distance cost

The dual problem takes a particularly simple form when the cost is of the form c(x, y) =
dist(x, y).

Proposition 4.4 (Kantorovich-Rubinstein). Let (X,dist) be a compact metric space and
µ, ν ∈ P(X). Then

Tdist(µ, ν) = max
ϕ:X→R

{∫
ϕd(µ− ν) | ϕ is 1-Lipschitz

}
.
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Proof. Note that ψc(x) = infy dist(x, y)− ψ(y) is 1-Lipschitz as a infimum of 1-Lipschitz
functions, and the same holds for ψcc. Moreover, if ψ is 1-Lipschitz, then dist(x, y)−ψ(y) >
−ψ(x), so that

ψc(x) = inf
y

dist(x, y)− ψ(y) = −ψ(x).

Thus, ϕ = −ψ and any 1-Lipschitz function is c-concave. Thus

Tdist(µ, ν) = sup
ψ:Y→R

∫
ψcdµ+

∫
ψccdν = sup

ϕ 1-Lip

∫
ϕdµ+

∫
ϕcdν = sup

ϕ 1-Lip

∫
ϕd(µ− ν).

4.3 Optimal transport map for twisted costs

We recall the following characterization of solutions to Monge’s problem from Lecture 1.

Lemma 4.5. Let γ ∈ Π(µ, ν) and T : X → Y measurable be such that γ({(x, y) ∈ X×Y |
T (x) 6= y}) = 0. Then, γ = γT := (id, T )#µ.

If γ is a minimizer for (KP) and (ϕ,ϕc) is a maximizer for (DP), we know that
ϕ ⊕ ϕc = c γ-almost everywhere. To build a solution to Monge’s problem, it is therefore
sufficient to show that the set {ϕ⊕ ϕc = c} is contained in the graph of a function. This
will be possible for the following class of costs:

Definition 4.6 (Twisted cost). A cost function c ∈ C1(Rd×Rd) is said to satisfy the twist
condition if

∀x0 ∈ Rd, the map y 7→ ∇xc(x0, y) ∈ Rd is injective

where ∇xc(x0, y) denotes the gradient of x 7→ c(·, y) at x = x0. Given x, v ∈ Rd, we
denote yc(x0, v) the unique point such that ∇xc(x0, yc(x0, v)) = v.

Theorem 4.7. Let c ∈ C1(Rd × Rd) be a twisted cost, let X,Y ⊂ Rd be compact subsets
and µ ∈ P(X) and ν ∈ P(Y ). Assume that µ is absolutely continuous with respect to the
Lebesgue measure. Then, there exists a c-concave function ϕ that is differentiable almost
everywhere such that ν = T#µ where T (x) = yc(x,∇ϕ(x)). Moreover, the only optimal
transport plan between µ and ν is γT .

Proof. Enlarging X if necessary, we may assume that spt(µ) is contained in the interior
of X. First note that by compactness of X × Y and since c is C1, the cost c is Lipschitz
continuous on X × Y . Take (ϕ,ϕc) a maximizing pair for (DP) with ϕ c-concave. Since
ϕ(x) = miny∈Y c(x, y) + ϕc(y) we see that ϕ is Lipschitz. By Rademacher’s theorem1,
ϕ is thus differentiable Lebesgue almost everywhere and, since µ is assumed absolutely
continuous, it is differentiable on a set B ⊂ spt(µ) with µ(B) = 1.

Consider an optimal transport plan γ ∈ Π(µ, ν). For every pair of points (x0, y0) ∈
spt(γ) ∩ (B × Y ), we have

ϕc(y0) 6 c(x, y0)− ϕ(x), ∀x ∈ X

with equality at x = x0, so that x0 minimizes the function x 7→ c(x, y0) − ϕ(x). Since
x0 ∈ spt(µ) and x0 belongs to the interior of X, one necessarily has ∇ϕ(x0) = ∇xc(x0, y0).
Then, by the twist condition, one necessarily has y0 = yc(x0,∇ϕ(x0)). This shows that
any optimal transport plan γ is supported on the graph of the map T : x ∈ B 7→
yc(x0,∇ϕ(x0)), and γ = γT by Lemma 4.5.

1https://en.wikipedia.org/wiki/Rademacher%27s_theorem
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4.4 Square-norm cost and link with convexity

When the cost is given by c(x, y) := 1
2‖y − x‖

2
2 there is a connection between c-concavity

and the usual notion of convexity.

Proposition 4.8. Given a function ξ : Rd → R∪{−∞}, let us define uξ : Rd → R∪{+∞}
through uξ(x) = 1

2‖x‖
2
2 − ξ(x). Then for c(x, y) = 1

2‖y − x‖22, we have uξc = (uξ)
∗

where f∗ denotes the convex conjugate2 of f . In particular, a function ξ is c-concave iff
x 7→ 1

2‖x‖
2
2 − ξ(x) is convex and lower-semicontinuous.

Proof. Observe that

uξc(x) =
1

2
‖x‖22 − ξc(x) = sup

y

1

2
‖x‖22 −

1

2
‖x− y‖22 + ξ(x) = sup

y
〈x, y〉 −

(1

2
‖y‖22 − ξ(y)

)
.

This proves the first part of the statement. The second part follows from the fact that
convex l.s.c. functions are characterized by the fact that they are sup of affine functions.

We conclude this lecture by the structure of optimal transport plans for the square-
norm cost, which is called Brenier Theorem.

Theorem 4.9. Let c(x, y) = 1
2‖y − x‖

2
2 and µ, ν ∈ P(Rd) be compactly supported. If µ is

absolutely continuous then there exists a unique optimal transport plan between µ and ν
which is of the form (id×∇ϕ̃)#µ for some convex function ϕ̃ : Rd → R.

Proof. Consider two compact convex subsets X,Y ⊂ Rd that contain spt(µ) and spt(ν)
in their respective interior. Then apply of Theorem 4.7. It holds ∇xc(x0, y) = x0 − y,
which is injective for all x0, thus yx(x0, v) = x0 − v and the optimal transport map is
T (x) = x − ∇ϕ(x) for some c-concave ϕ. Finally, define ϕ̃(x) = 1

2‖x‖
2 − ϕ(x) which is

convex and l.s.c. by Proposition 4.8, with gradient ∇ϕ̃(x) = x−∇ϕ(x).
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