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These notes are based on the ones by Quentin Mérigot

Some motivations for studying optimal transport.

• Variational principles for (real) Monge-Ampère equations occuring in geometry (e.g.
Gaussian curvature prescription) or optics.

• Wasserstein/Monge-Kantorovich distance between probability measures µ, ν on e.g.
Rd: how much kinetic energy does one require to move a distribution of mass de-
scribed by µ to ν ?
−→ interpretation of some parabolic PDEs as Wasserstein gradient flows, construc-
tion of (weak) solutions, numerics, e.g.

{
∂tρ+ div(ρv) = 0

v = −∇ log ρ
or


∂tρ+ div(ρv) = 0

v = −∇p−∇V
p(1− ρ) = 0

p > 0, ρ 6 1

−→ interesting geometry on P(X), with an embedding X ↪→ P(X). Applications in
geometry (synthetic notion of Ricci curvature for metric spaces), machine learning,
inverse problems, etc.

• Quantum physics: electronic configuration in molecules and atoms.

References.

Introduction to optimal transport, with applications to PDE and/or calculus of variations
can be found in books by Villani [6] and Santambrogio [5]. Villani’s second book [7]
concentrates on the application of optimal transport to geometric questions (e.g. synthetic
definition of Ricci curvature), but its first chapters might be useful. We also mention
Gigli, Ambrosio and Savaré [2] for the study of gradient flows with respect to the Monge-
Kantorovich/Wasserstein metric.

Notation.

In the following, we assume that X is a complete and separable metric space. We denote
C(X) the space of continuous functions, C0(X) the space of continuous function vanishing
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at infinity Cb(X) the space of bounded continuous functions. We denoteM(X) the space
of Borel regular measures on X with finite total mass and

M+(X) := {µ ∈M(X) | µ > 0}

P(X) := {µ ∈M+(X) | µ(X) = 1}

Some reminders.

Definition 0.1 (Lower semi-continuous function). On a metric space Ω, a function f :
Ω → R ∪ {+∞} is said to be lower semi-continuous (l.s.c.) is for every sequence xn → x
we have f(x) 6 lim infn f(xn).

Definition 0.2. A metric space Ω is said to be compact if from any sequence xn, we can
extract a converging subsequence xnk

→ x ∈ Ω.

Theorem 0.3 (Weierstrass). If f : Ω→ R∪ {+∞} is l.s.c. and Ω is compact, then there
exists x? ∈ Ω such that f(x?) = min{f(x) | x ∈ Ω}.

Definition 0.4 (weak and weak−? convergence). A sequence xn in a Banach space X
is said to be weakly converging to x and we write xn ⇀ x, if for every η ∈ X ′ (X ′ is
the topological dual of X and 〈·, ·〉 is the duality product) we have 〈η, xn〉 → 〈η, x〉. A
sequence ηn ∈ X ′ is said to be weakly-? converging to η ∈ X ′, and we write ηn

?
⇀ η, if for

every x ∈ X we have 〈ηn, x〉 → 〈η, x〉.

Theorem 0.5 (Banach-Alaoglu). If X ′ is separable and ηn is a bounded sequence in X ′,
then there exists a subsequence ηnk

weakly-? converging to some η ∈ X ′

Theorem 0.6 (Riesz). Let X be a compact metric space and X = C(X) then every element
of X is represented in a unique way as an element of M+(X), that is for every η ∈ X
there exists a unique λ ∈M+(X) such that 〈η, ϕ〉 =

∫
X ϕdλ for every ϕ ∈ X .

Definition 0.7 (Narrow convergence). A sequence of finite measures (µn)n>1 on X nar-
rowly converges to µ ∈M(X) if

∀ϕ ∈ Cb(X), lim
n→∞

∫
X
ϕdµn =

∫
X
ϕdµ.

With a slightly abuse of notation we will denote it by µn ⇀ µ.

Remark 0.8. Since we will mostly work on compact set X, then C(X) = C0(X) = Cb(X).
This means that the narrow convergence of measures, that is the notion of convergence
in duality with Cb(X), corresponds to the weak-? convergence (the convergence in duality
with C0(X)).

1 The problems of Monge and Kantorovich

1.1 Monge problem

Definition 1.1 (Push-forward and transport map). LetX,Y be metric spaces, µ ∈M(X)
and T : X → Y be a measurable map. The push-forward of µ by T is the measure T#µ
on Y defined by

∀B ⊆ Y, T#µ(B) = µ(T−1(B)).
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or equivalently if the following change-of-variable formula holds for all measurable and
bounded ϕ : Y → R: ∫

Y
ϕ(y)dT#µ(y) =

∫
X
ϕ(T (x))dµ(x).

A measurable map T : X → Y such that T#µ = ν is also called a transport map between
µ and ν.

Example 1.2. If Y = {y1, . . . , yn}, then T#µ =
∑

16i6n µ(T−1({yi}))δyi .

Example 1.3. Assume that T is a C1 diffeomorphism between open sets X,Y of Rd, and
assume also that the probability measures µ, ν have continuous densities ρ, σ with respect
to the Lebesgue measure. Then,∫

Y
ϕ(y)σ(y)dy =

∫
X
ϕ(T (x))σ(T (x)) det(DT (x))dx.

Hence, T is a transport map between µ and ν iff

∀ϕ ∈ Cb(X),

∫
X
ϕ(T (x))σ(T (x)) det(DT (x))dx =

∫
X
ϕ(T (x))ρ(x)dx

Hence, T is a transport map iff the non-linear Jacobian equation holds

ρ(x) = σ(T (x)) det(DT (x)).

Definition 1.4 (Monge problem). Consider two metric spaces X,Y , two probability mea-
sures µ ∈ P(X), ν ∈ P(Y ) and a cost function c : X × Y → R∪ {+∞}. Monge’s problem
is the following optimization problem

(MP) := inf

{∫
X
c(x, T (x))dµ(x) | T : X → Y and T#µ = ν

}
(1.1)

This problem exhibits several difficulties, one of which is that both the constraint
(T#µ = ν) and the functional are non-convex.

Example 1.5. There might exist no transport map between µ and ν. For instance,
consider µ = δx for some x ∈ X. Then, T#µ(B) = µ(T−1(B)) = δT (x). In particular, if
card(spt(ν)) > 1 (see Def. 1.15), there exists no transport map between µ and ν.

Example 1.6. The infimum might not be attained even if µ is atomless (i.e. for every
point x ∈ X, µ({x}) = 0). Consider for instanceµ = λ|{0}×[−1,1] and ν = 1

2 λ|{±1}×[−1,1]
on R2 , where λ is the Lebesgue measure. One solution is to allow mass to split, leading
to Kantorovich’s relaxation of Monge’s problem.

1.2 Kantorovich problem

Definition 1.7 (Marginals). The marginals of a measure γ on a product space X × Y
are the measures πX#γ and πY#γ, where πX : X × Y → X and πY : X × Y → Y are
their projection maps.

Definition 1.8 (Transport plan). A transport plan between two probabily measures µ, ν
on two metric spaces X and Y is a probability measure γ on the product space X × Y
whose marginals are µ and ν. The space of transport plans is denoted Π(µ, ν), i.e.

Π(µ, ν) = {γ ∈ P(X × Y ) | πX#γ = µ, πY#γ = ν} .

Note that Π(µ, ν) is a convex set.
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Remark 1.9 (Π(µ, ν) is non-empty). Note that the set of transport plans Π(µ, ν) is never
empty, as it contains the measure µ⊗ ν.

Definition 1.10 (Transport plan associated to a map). Let T be a transport map between
µ and ν, and define γT = (id, T )#µ. Then, γT is a transport plan between µ and ν.

Definition 1.11 (Kantorovich problem). Consider two metric spaces X,Y , two proba-
bility measures µ ∈ P(X), ν ∈ P(Y ) and a cost function c : X × Y → R ∪ {+∞}.
Kantorovich’s problem is the following optimization problem

(KP) := inf

{∫
X×Y

c(x, y)dγ(x, y) | γ ∈ Π(µ, ν)

}
(1.2)

Remark 1.12. The infimum in Kantorovich problem is less than the infimum in Monge
problem. Indeed, consider a transport map satisfying T#µ = ν and the associated trans-
port plan γT . Then, by the change of variable one has∫

X×Y
c(x, y)d(id, T )#µ(x, y) =

∫
X
c(x, T (x))dµ,

thus proving the claim.

Example 1.13 (Finite support). Assume that X = Y = {1, . . . , N} and that µ, ν are the
uniform probability measures over X and Y . Then, Monge’s problem can be rewritten as
a minimization problem over bijections between X and Y :

min{ 1

N

∑
16i6N

c(i, σ(i)) | σ ∈ SN}.

In Kantorovich’s relaxation, the set of transport plans Π(µ, ν) agrees with the set of bi-
stochastic matrices :

γ ∈ Π(µ, ν)⇐⇒ γ > 0,
∑
i

γ(i, j) = 1/N =
∑
j

γ(i, j).

By Birkhoff’s theorem, any extremal bi-stochastic matrix is induced by a permutation.
This shows that, in this case, the solution to Monge’s and Kantorovich’s problems agree.

Remark 1.14. Proposition 1.16 shows that a transport plan concentrated on the graph
of a function T : X → Y is actually induced by a transport map. One can prove that
transport plans concentrated on graphs are extremal points in the convex set Π(µ, ν), but
the converse does not hold in general (the counter-examples are quite tricky to construct,
see [1]). This means that one cannot resort to a simple argument such as Birkhoff’s
theorem to show that solutions to Kantorovich’s problem (transport plans) are induced
by transport maps.

Definition 1.15 (Support). Let X be a separable metric space. The support of a non-
negative measure µ is the smallest closed set on which µ is concentrated

spt(µ) :=
⋂
{A ⊆ X | A closed and µ(X \A) = 0}.

A point x belongs to spt(µ) iff for every r > 0 one has µ(B(x, r)) > 0.

Proposition 1.16. Let γ ∈ Π(µ, ν) and T : X → Y measurable be such that γ({(x, y) ∈
X × Y | T (x) 6= y}) = 0. Then, γ = γT .
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Proof. By definition of γT one has γT (A×B) = µ(T−1(B) ∩A) for all Borel sets A ⊆ X
and B ⊆ Y . On the other hand,

γ(A×B) = γ({(x, y) | x ∈ A, and y ∈ B})
= γ({(x, y) | x ∈ A, y ∈ B and y = T (x)})
= γ({(x, y) | x ∈ A ∩ T−1(B), y = T (x)}
= µ(A ∩ T−1(B)),

thus proving the claim.

2 Existence of solutions to Kantorovich’s problem

The proof of existence relies on the direct method in the calculus of variations, i.e. the
fact that the minimized functional is lower semi-continuous and the set over which it is
minimized is compact.

Theorem 2.1. Let X,Y be two compact spaces, and c : X × Y → R ∪ {+∞} be a lower
semi-continuous cost function, which is bounded from below. Then Kantorovich’s problem
admits a minimizer.

Lemma 2.2. Let f : X → R ∪ {+∞} be a lower semi-continuous function, which is also
bounded from below. Define F : P(X)→ R ∪ {+∞} through F(µ) =

∫
X fdµ. Then, F is

lower-semicontinuous for the narrow convergence, i.e.

∀µn ⇀ µ, lim inf
n→∞

F(µn) > F(µ).

Proof. Step 1. We show that there exists a family of bounded and continuous functions
fk such that k 7→ fk is pointwise increasing and f = supk f

k. We assume that there
exists x0 such that f(x0) < +∞ (if not, there is nothing to prove). Define gk(x) =
infy∈X f(y) + kd(x, y) 6 f(x0) + kd(x, x0). The function gk is k-Lipschitz as a minimum
of k-Lipschitz functions, and one obviously has gk 6 g` 6 f for k 6 `. Let us prove that
supk g

k(x) = f(x) for any x ∈ X. Given x, and for every k, there exists a point xk such
that

f(xk) + kd(x, xk) 6 gk(x) + 1/k 6 f(x) + 1/k. (2.3)

Using that f >M > −∞ we get

d(x, xk) 6
1

k
(f(x) + 1/k − f(xk)) 6

1

k
(f(x) + 1/k −M),

so that xk → x. Then, taking the limit in (2.3) and using the lower semicontinuity of f
leads to f(x) 6 lim infk→∞ f(xk) 6 supk→∞ g

k(x). Finally, set fk(x) = min(gk(x), k).
Then fk is k-Lipschitz, bounded by k and one has supk f

k = f .
Step 2. Let Fk(µ) =

∫
fkdµ. Since fk is continuous and bounded, the linear form

Fk is narrowly continuous. Thus, F = supk Fk is lower semi-continuous as a maximum
of lower semi-continuous functions.

Proof of Theorem 2.1. Define F(γ) :=
∫
cdγ, then by Lemma 2.2 F is l.s.c. for the narrow

convergence. We just need to show that the set Π(µ, ν) is compact for narrow topology.
Take a sequence γn ∈ Π(µ, ν), since they are probability measures then they are bounded
in the dual of C(X × Y ). Hence, usual weak-? compactness in dual spaces guarantees
the existence of a converging subsequence γnk

⇀ γ ∈ P(X × Y ). We need to check that
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γ ∈ Π(µ, ν). Fix ϕ ∈ C(X), then
∫
ϕ(x)dγnk

=
∫
ϕdµ and by passing to the limit we have∫

ϕ(x)dγ =
∫
ϕdµ. This shows that πX#γ = µ. The same may be done for πY which

concludes the proof.

3 Kantorovich as a relaxation of Monge

The question that we consider here is the equality between the infimum in Monge problem
and the minimum in Kantorovich problem. This part is taken from Santambrogio [5].

Theorem 3.1. Let X = Y be a compact subset of Rd, c ∈ C(X × Y ) and µ ∈ P(X),
ν ∈ P(Y ). Assume that µ is atomless. Then,

inf (MP) = min (KP).

This theorem was first proved on R by Gangbo [3]. The proof presented here is taken
from Santambrogio’s book [5]. The next two counter examples are due to an article of
Pratelli [4], where he also proves an extension of this theorem.

Example 3.2. Take the same measures on R2 as in example 1.6, but take the discontin-
uous (but lsc) cost c(x, y) = 1 if ‖x− y‖ 6 1 and 2 if not. Then, the value of the infimum
in Monge’s problem is 2, while the minimum in Kantorovich’s problem is 1.

Proof. Take any transport map T between µ and ν. It suffices to show that µ({x |
‖T (x)− x‖ = 1}) = 0, or equivalently that µ(E±) = 0 where E± = {x | T (x) = x±(1, 0)}.
But, by definition of the measures, ν(T (E+)) = 2µ(E+), which contradicts the property
T#µ = ν unless µ(E+) = 0.

Example 3.3. Consider µi = 1
2(δxi +α λ|B(yi,1)

) with α = 1
λ(B(yi,1))

on R2 with c(x, y) =

‖x− y‖. Then, any transport map must transport the Dirac to the Dirac and the ball to
the ball, so that its cost is ‖x1 − x2‖ + ‖y1 − y2‖. On the other hand, a transport plan
can transport δx1 to α λ|B(y2,1)

with cost 6 ‖x1 − y2‖+ 1. The total cost of this transport
plan is 2 + ‖x1 − y2‖+ ‖x2 − y1‖, which can be (much) lower that ‖x1 − x2‖+ ‖y1 − y2‖
for suitable positions for these points.

We quote the following lemma without proof, see Corollary 1.28 in [5].

Lemma 3.4. If µ, ν ∈ P(Rd) and µ has no atoms, then ∃T : Rd → Rd measurable such
that T#µ = ν.

Lemma 3.5. Let K be a compact metric space. For any ε > 0 there exists a (measurable)
partition K1, . . . ,KN of K such that for every i, diam(Ki) 6 ε.

Proof. By compactness, there exists N points x1, . . . , xN such that K ⊆
⋃
i B(xi, ε).

The partition K1, . . . ,KN of K defined recursively by Ki = {x ∈ K \ K1 ∪ . . .Ki−1 |
∀j, d(x, xi) 6 d(x, xj)} satisfies Ki ⊆ B(xi, ε).

Proof of Theorem 3.1. Using the continuity of the functional γ 7→
∫
cdγ (which uses the

continuity of the cost), the statement will follow if we are able to prove that any transport
plan γ ∈ Π(µ, ν), there exists a sequence of transport maps TN : Rd → Rd such that
TN# µ = ν and γTN narrowly converges to γ.

By Lemma 3.5, for any ε > 0 there exist a measurable partition K1, . . . ,KN of X
such that diam(Ki) 6 ε. Define γi := γ|Ki×Rd . Now, let µi := πX#γi and νi := πY#γi.
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Since µi 6 µ, the measure µi has no atoms, so that by the previous Lemma, there exists
a transport plan Si : Ki → Rd with Si#µi = νi. Then by gluing the transports Si we
get a transport TN sending µ onto ν (here we use that µ =

∑
i µi and ν =

∑
i νi) as the

measures µi are concentrated on disjoint sets.
Since γSi , γi ∈ P(Ki × Y ) both have marginals µi and νi, one has

γSi(Ki ×Kj) = νi(Kj) = γi(Ki ×Kj).

To prove narrow convergence, we consider a test function ϕ ∈ Cb(X×Y ). By compactness
of X×Y , this function has a uniform continuity modulus ωϕ with respect to the Euclidean
norm on Rd × Rd. Moreover,∫

X×Y
ϕd(γ − γTN ) =

∑
ij

∫
Ki×Kj

ϕd(γi − γSi)

6
∑
ij

γi(Ki ×Kj) max
Ki×Kj

ϕ− γSi(Ki ×Kj) min
Ki×Kj

ϕ

6
∑
ij

γi(Ki ×Kj)ωϕ(diam(Ki ×Kj)) = O(ωϕ(2ε)).

Since this holds for any function ϕ, one sees that γTN converges to γ narrowly. In partic-
ular, if γ is the minimizer in Kantorovich’s problem, then γTN is a minimizing sequence.
Then, TN# µ = ν and

lim
N→∞

∫
X×Y

c(x, TN (x))dµ(x) =

∫
X×Y

cdγ,

thus proving the statement.

4 The dual problem

We now focus on duality theory. We firstly find a formal dual problem by exchanging
inf − sup. Let write down the constraint γ ∈ Π(µ, ν) as follows: if γ ∈ M+(X × Y ) (we
remind that X,Y are compact spaces) we have

sup
ϕ,ψ

∫
X
ϕdµ+

∫
Y
ψdν −

∫
X×Y

(ϕ(x) + ψ(y))dγ =

{
0 if γ ∈ Π(µ, ν),

+∞ otherwise,

where the supremum is taken on Cb(X)× Cb(Y ). Thus we can now remove the constraint
on γ in (KP)

inf
γ∈M+(X×Y )

∫
X×Y

cdγ + sup
ϕ,ψ

∫
X
ϕdµ+

∫
Y
ψdν −

∫
X×Y

(ϕ(x) + ψ(y))dγ

and by interchanging sup and inf we get

sup
ϕ,ψ

∫
X
ϕdµ+

∫
Y
ψdν + inf

γ∈M+(X×Y )

∫
X×Y

(c(x, y)− ϕ(x)− ψ(y))dγ.

One can now rewrite the inf in γ as constraint on ϕ and ψ as

inf
γ∈M+(X×Y )

∫
X×Y

(c− ϕ⊕ ψ)dγ =

{
0 if ϕ⊕ ψ 6 c on X × Y
−∞ otherwise

,

where ϕ⊕ ψ(x, y) := ϕ(x) + ψ(y).
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Definition 4.1 (Dual problem). Given µ ∈ P(X), ν ∈ P(Y ) and a cost function c ∈
C(X × Y ). The dual problem is the following optimization problem

(DP) := sup

{∫
X
ϕdµ+

∫
Y
ψdν | ϕ ∈ Cb(X), ψ ∈ Cb(Y ), ϕ⊕ ψ 6 c

}
(4.4)

Remark 4.2. One trivially has the weak duality inequality (KP) > (DP). Indeed, de-
noting

L(γ, ϕ, ψ) =

∫
X×Y

(c− ϕ⊕ ψ)dγ) +

∫
X
ϕdµ+

∫
Y
ψdν,

one has for any (ϕ,ψ, γ) ∈ Cb(X)× Cb(Y )×M+(X × Y ),

inf
γ̃>0

L(γ̃, ϕ, ψ) 6 L(γ, ϕ, ψ) 6 sup
ϕ̃,ψ̃

L(γ, ϕ̃, ψ̃)

Taking the supremum with respect to (ϕ,ψ) on the left and the infimum with respect to
γ on the right gives inf (KP) > sup (DP). When sup (DP) = inf (KP), one talks of strong
duality. Note that this is independent of whether the infimum and the supremum are
attained.

Remark 4.3. As often, the Lagrange multipliers (or Kantorovich potentials) ϕ,ψ have an
economic interpretation as prices. For instance, imagine that µ is the distribution of sand
available at quarries, and ν describes the amount of sand required by construction work.
Then, (KP) can be interpreted as finding the cheapest way of transporting the sand from
µ to ν for a construction company. Imagine that this company wants to externalize the
transport, by paying a loading coast ϕ(x) at a point x (in a quarry) and an unloading coast
ψ(y) at a point y (at a construction place). Then, the constraint ϕ(x) + ψ(y) 6 c(x, y)
translates the fact that the construction company would not externalize if its cost is higher
than the cost of transporting the sand by itself. Then, Kantorovich’s dual problem (DP)
describes the problem of a transporting company: maximizing its revenue

∫
ϕdµ+

∫
ψdν

under the constraint ϕ ⊕ ψ 6 c imposed by the construction company. The economic
interpretation of the strong duality (KP) = (DP) is that in this setting, externalization
has exactly the same cost as doing the transport by oneself.

We now focus on the existence of a pair (ψ,ψ) which solves (DP) and postpone the
proof of the strong duality to the next lecture.

Definition 4.4 (c-transform and c-transform). Given a function f : x→ R, we define its
c-transform f c : Y → R by

f c(y) = inf
x∈X

c(x, y)− f(x).

We also define the c-transform of g : Y → R by

gc(x) = inf
y∈Y

c(x, y)− g(y).

We also say that a function ψ on Y is c-concave if there exists f such that ψ = f c.
Notice now that if c is continuous on a compact set, and hence uniformly continuous, then
there exists am increasing function ω : R+ → R+ with ω(0) = 0 such that

|c(x, y)− c(x′, y′)| 6 ω(dX(x, x′) + dY (y, y′)).
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If we consider f c we have that f c(y) = infx f̃x(y) with f̃x(y) = c(x, y) − f(x), and the
functions f̃x satisfy |f̃x(y)− f̃x(y)| 6 ω(dY (y, y′)). This implies that f c actually share the
same continuity modulus of c. It snow quite easy to see that given an admissible pair (ψ,ψ)
in (DP), one cas always replace it with (ϕ,ϕc) and then (ϕcc, ϕc) and the constrained are
preserved and the integrals increased. The underlying idea of these transformations is
actually to improve a maximizing sequence to get a uniform bound on its continuity.

Theorem 4.5. Suppose that X and Y are compact and c ∈ C(X × Y ). Then there exists
a pair (ϕcc, ϕc) which solves (DP).

Proof. Let us first denote by J (ϕ,ψ) the following functional

J(ϕ,ψ) =

∫
X
ϕ,dµ+

∫
Y
ψdν,

then it is clear that for every constant λ we have J (ϕ− λ, ψ + λ) = J (ϕ,ψ). Given now
a maximising sequence (ϕn, ψn) we can improve it by means of the c- and c-transform
obtaining a new one (ϕccn , ϕ

c
n). Notice that by the consideration above the sequences

ϕccn and ϕcn are uniformly equicontinuous. Since ϕcn is continuous on a compact set we
can always subtract its minimum and assume that minY ϕ

c
n = 0. This implies that the

sequence ϕcn is also equibounded as 0 6 ϕcn 6 ω(diam(Y )). We also deduce uniform
bounds on ϕccn as ϕccn = infY c(x, y) − ϕc(y). This let us apply Ascoli-Arzela’s theorem
and extract two uniformly converging subsequences ϕccnk

→ ϕ and ϕcnk
→ ψ where the

pair (ϕ,ψ) satisfies the inequality constraint. Moreover, since (ϕccn , ϕ
c
n) is a maximising

sequence we get that the pair (ϕ,ψ) is optimal. now one can apply again the c- and
c-transforms obtaining an optimal pair of the form (ϕcc, ϕc).
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