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A Geometric Motivation

Setting: Probability measures P(X’) on a metric space (X, dist).

Goal
Build a metric on P(X) consistent with the geometry of (X, dist).
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A Geometric Motivation

Setting: Probability measures P(X’) on a metric space (X, dist).

Goal
Build a metric on P(X) consistent with the geometry of (X, dist).

p,v € P(X)

‘ Distance between p and v...
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Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

M transport V
— 3
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Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

M transport V
—

Strong modelization power:
e probability distribution, empirical distribution

e weighted undistinguishable particles
e density of a gas, a crowd, cells...

Early universe Crowd motion
(Brenier et al. '08) (Roudneff et al., '12)

Point clouds

Color histograms (Delon et al.)
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Main Theoretical Facts

A Glimpse of Applications
Computation and Approximation
Density Fitting

Losses between Probability Measures

3/48



Main Theoretical Facts
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Ingredients

e Metric spaces X and ) (complete, separable)
e Cost function ¢ : X x ) — R U {oo} (lower bounded, Isc)
e Probability measures p € P(X) and v € P())

' transport vV
///\\J/\\\#//”//\\\\\;

X y
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Transport map

Definition (pushforward)
Let T : X — Y be a map. The pushforward measure of y by T,
denoted T4, is characterized by

Tyu(B) = u(T1(B)) forall BC Y.

o1 Tu(w)
MA

X y

If X is a random variable such that Law(X) = pu, then
Law(T(X)) = Typ.
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Ingredients

e Metric spaces X and ) (complete, separable)
e Cost function ¢ : X x ) — R U {oo} (lower bounded, Isc)
e Probability measures € P(X) and v € P())

' transport vV
///\\J/\\\g//”’//\\\\\g

X y

Definition (Monge problem)

150 { /X e, Tl - T#M_u}

T:-X—=)Y

~> in some cases: no solution, no feasible point...
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Transport Plans

Definition (Set of transport plans)

Positive measures on X' x ) with specified marginals :

M(u,v) == {7 € M1(X x V) prof 7 = . profy 7 = v}

Az -~
N
Product coupling Deterministic coupling
T=p®v v=(Idx T)gp

e Generalizes permutations, bistochastic matrices, matchings
e convex, weakly compact 8/48



Transport Plans

Definition (Set of transport plans)

Positive measures on X x ) with specified marginals :

M(p,v) = {’V € My(X x V) : projly v = p, projl, v = 1/}

Product couplin
Ping Cycle-free coupling

Y=p®v

e Generalizes permutations, bistochastic matrices, matchings
e convex, weakly compact
8/48



Ingredients

e Metric spaces X and ) (complete, separable)
e Cost function ¢ : X x ) — R U {oo} (lower bounded, Isc)
e Probability measures o € P(X) and v € P())

Definition (Optimal transport problem)

C(p,v):= min / c(x,y)dv(x,y)
yeN(p,v) Jxxy

M transport ¥
—

X y

Probabilistic view: min(x y){E[c¢(X,Y)]: X ~ pand Y ~ v}
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Theorem (Kantorovich duality)

min /x c(x,y)dv(x,y) (Primal)

YEN(p,v) XY

i’Zm‘d{ [ orant) + /y zp(y)dv(y):¢(x)+¢(y>gc(x,y)} (Dual)

Economy: (Primal) centralized vs. (Dual) externalized planification

DI Optimal plan Optimal prices
08 08 08

®
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06 06 A | os 08 fros
os os 0s
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04 |foa
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02 ; 02 02 02 |fo2
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Theorem (Kantorovich duality)

min /x c(x,y)dv(x,y) (Primal)

YEN(p,v) XY

Q?(?;{ [ otdut) + /y zp(y)du(y):¢(x)+w(y)3c(x,y)} (Dual)
Yel (v

Economy: (Primal) centralized vs. (Dual) externalized planification

DI Optimal plan Optimal prices
08 08 08

®
07 R 07 10 g 10

06 06 A | os 08 fros

os os 0s

06 Jt 06
04 04
04 |foa
03 03 03
02 ; 02 02 02 |fo2
.
04 o6 08

o1 01 oo Moo

At optimality
o ¢(x)+ ¥(y) = c(x,y) for v almost every (x,y)

e v is concentrated on a “c-cyclically monotone” set
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Generalizing Convex Analysis Tools (1)

Definition (Cyclical monotonicity)

I C X x Y is c-cyclical monotone iff for all (x;,y;)7_; € "

n n

Z c(xi,yi) < Z c(Xi, Yo(i)) for all permutation o.
i=1 i=1
(x3,¥3)
O
(x2. y2)
O
Y1 ()
@)




Generalizing Convex Analysis Tools (1)

Definition (Cyclical monotonicity)

I C X x Y is c-cyclical monotone iff for all (x;,y;)7_; € "

Z c(xi,yi) < Z c(Xi, Yo(i)) for all permutation o.
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Generalizing Convex Analysis Tools (1)

Definition (c-conjugacy)
For X =Y and ¢ : X% — R symmetric :

#(y) i= inf c(x,9) = 9(x)

A function ¢ is c-concave iff there exists v such that ¢ = ¥°.
c(-,y) +cst

=
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Generalizing Convex Analysis Tools (1)

Definition (c-conjugacy)

For X =Y and ¢ : X% — R symmetric :

¢°(y) = inf c(x,y) — ¢(x)

xeX

A function ¢ is c-concave iff there exists v such that ¢ = ¥°.

e on RY, for c(x,y) = x - y: 1) c-concave <> ¢ concave;

o for all ¢, <€ = ¢¢;

® consequence :

Cu) =, max { [ sauts )+ [ e M)} (Ou)

(1) c-concave
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Special Cases

e real line (¥ =Y =R)
e distance cost (¢ = dist)

e quadratic cost (c = || - — - ||?)
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Theorem (Monotone Rearrangement)
If u,v € P(R) and c(x, y) = h(y — x) with h strictly convex:
e unique optimal transport plan v*

e denoting FI~1I the quantile functions:

1
Clu,v) = /0 h(FL1(s) — FI-(s))ds

“Proof”. Here, c-cyclically monotone <> increasing graph. [J

(2{y2)
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Distance Cost

If X =Y and c(x,y) = dist(x, y)
e ¢ c-concave < ¢ 1-Lipschitz &

|p(x) — d(y)| < dist(x, y), Vx,y
e ¢°(y) = infxd(x,y) — ¢(x) = —&(y)

® consequence :

= e, { [ o0d-n} (o

15/48



Quadratic Cost

Reformulation
e 1, v € P(R?) with finite moments of order 2
e cost c(x,y) = Ly — x|

e note that c(x,y) = (||x||> + [lyl|?)/2 — x - y, thus solve:

max,ean,ce { [ benrly) i € i %) (Primal)
X

Theorem (Brenier ’87)

(i) At optimality, spty C 9¢, where ¢ : R" — R convexe.

(ii) If i has a density, T = V¢ is the unique optimal map.
“Proof”. (i) ¢(x) + ¢*(y) = x - y, y-a.e (ii) V¢ defined L-a.e.
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Wasserstein distance

Definition
Let dist : X x X — R be a metric. The Wasserstein distance is

Wa(u, v) :={ min /dist(x,y)2dv(x7y):7€”(uw)}

YEM(X2?) J x2

o > metrizes weak convergence + 2-nd order moments
e if (X, dist) is a geodesic space, so is (P(X), Wa)
e similar definition for W, with p > 1

A. 1A

Constant speed geodesic for W, on P(R)
(L=t)d+tT)pp
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First Properties

e rich duality with concepts from convex analysis

e rich structure in specific cases

Properties of the distance W, on RY
e optimal plans supported on 9¢ with ¢ : R — R convex
o the space (P(RY), W,) is a geodesic space

e some explicit cases (real line)
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A Glimpse of Applications
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Histogram and shapes processing

Color transfer

color target

Barycenters

RASENI\X
a* 0‘5‘\‘.
Wttt d

ot
* %4+ +
e
'(‘(a
@0

@

G

(Benamou et al. '15) (Solomon et al. '15)
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Histograms and shape processing

JN3 9

35 8

e compute barycenter i of a family (1)« a2 ala
e transport maps from ji gives a Hilbertian ol b ’
parameterization : _5 3

e apply your favorite data analysis method! - 3 -
A 3

Three PCs from the
MNIST dataset (Seguy
and Cuturi, 2015)

[Refs]:
Seguy, Cuturi (2015). Principal Geodesic Analysis for Probability Measures |[...]
Wang, Slepcev, Basu, Ozolek, Rohde (2012). A linear optimal transportation framework
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Machine learning

Loss for regression:
Learn predictor fp : X — ) := P({1,...,k})

in E W2(f(X), Y)].
min Eox,y) (W3 (%(X), V)]

(a) Flickr user tags: zoo, run, (b) Flickr user tags: travel, ar- (c) Flickr user tags: spring, race,
mark; our proposals: running, chitecture, tourism; our proposals: ~training; our proposals: road, bike,
summer, fun; baseline proposals: sky, roof, building; baseline pro- trail; baseline proposals: dog,
running, country, lake. posals: art, sky, beach. surf, bike.

Predict probability over tags from an image (Frogner et al. 2015)

[Refs]:
Frogner, Zhang, Mobahi, Araya, Poggio (2015). Learning with a Wasserstein loss.
g g va, Poggio (2015) 24 /48



Data analysis

Learning from population dynamics

e Goal: given a population of undistinguishable particles p; at
times t = 1,2,..., recover the motion of individual particles

e Solution: compute optimal transport maps from pi; to jip11

Dynamic of cells in “gene space” Dynamic of a single cell type

[Refs]:
Shiebinger et al. (2017). Optimal-transport analysis of single-cell gene expression identifies developmental
trajectories in reprogramming.
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Generating figure from MNIST

(Genevay et al. 2018)

[Refs]:

Learning Generative Models with Sinkhorn Divergences.

)

2017

(

Genevay, Peyré, Cuturi
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Computation and Approximation

27 /48



Discrete Optimal Transport

Discrete Setting
o Discrete measures 1 =311 pidx;, v =D, q;0y,.

e Cost matrix G;; = c(x;, y;)

Linear Program

min Z Cijvij

Y€S(p,q)
where S(p,q) = {y € RI*™; p; = 3";vij and q; =3, 7ij}-
o
° [ ]
Y °
R Q0. :
. °
° e @ o ¢ O
w and v on R?

Matrix representation 28,48
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o Discrete measures 1 =311 pidx;, v =D, q;0y,.

e Cost matrix G;; = c(x;, y;)

Linear Program

min Z Cijvij

v€S(p;q)

where S(p,q) = {y € RI*™; p; = 3";vij and q; =3, 7ij}-
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Exact solvers

Algorithm Setting Complexity
Network simplex - O(n?)
Hungarian bistochastic O(n%)
Auction Cjj integers O(n%)

Efficient methods in R? or R3

e semi-discrete solver based on Laguerre cells
e minimizing Benamou-Brenier functional (finite elements)

e resolution of Monge-Ampere equation (finite elements)

(Levy, 15')

29 /48



Approximate Solver

Optimal coupling

30,48



Approximate Solver

Product coupling Optimal coupling

Entropic regularization

min Gijvij+nKL(y,p®v
v€S(p,9q) %: s ( )

where KL(a, b) = Z,- ajlog(a;/b;).

RRERR b

Optimal transport plan as 7 increases (Nenna et al. '15)

30,48



Sinkhorn’s algorithm

Proposition (Optimality Condition)
Define the matrix K;j = exp(—n~! - C; ;). There exists a, b € R".
such that at optimality:

7" = diag(a)Kdiag(b) & 7f; = aiKib;

31,48



Sinkhorn’s algorithm

Proposition (Optimality Condition)
Define the matrix K;j = exp(—n~! - C; ;). There exists a, b € R".
such that at optimality:

7" = diag(a)Kdiag(b) & 7f; = aiKib;

Sinkhorn’s Algorithm
1. initialize b= (1,...,1) and repeat until convergence

1.1 a<+ po(Kb) [rescale rows]
1.2 b+ qo(KTa) [rescale columns]

2. return 771. = a;Kj jb;.

Evolution of (aiKj,bj)i;, in (Benamou et al. 2015)
31/48



Complexity Results

One iteration
e matrix/vector product in O(n?) (sometimes better)

e highly parallelizable on GPUs

Solving entropy-regularized OT
e linear convergence of a, b in Hilbert metric
e c-accurate solution in O(n?log(1/¢))

e stochastic algorithms, accelerations

32/48



Complexity Results

One iteration
e matrix/vector product in O(n?) (sometimes better)

e highly parallelizable on GPUs

Solving entropy-regularized OT
e linear convergence of a, b in Hilbert metric
e c-accurate solution in O(n?log(1/¢))

e stochastic algorithms, accelerations

Solving OT
e Sinkhorn's algorithm allows to build an e-accurate feasible
transport plan in O(n?/€®) operations
e best bound in O(n?/€) (active research)
[Refs (see ref therein)]:
Lin, Ho, Jordan (2019). On Efficient Optimal Transport |[...]

Dvurechensky, Gasnikov, Kroshnin (2018). Computational Optimal Transport [...]
Blanchet, Jambulapati, Kent, Sidford (2018). Towards Optimal Running Times for Optimal Transport 32 / 48



Density Fitting
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Density Fitting

Ingredients
e a parametric family § € R¥ — yp € P(RY)
e a target v € P(RY)

General problem
Chose a loss D : P(R9)? — [0, o0] and solve

min D(ug, V).
jally (1o, v)

v

X
0 Mo D(N’H’: 1/)’\
//\

X
Hao
X 90

Rk

P(RY) 36/ 48



Examples (1)

Statistical inference
® (i is an exponential family

e v is known through samples 7 = %27:1 Ox;
Choosing D = KL gives the maximum likelihood estimator:
min KL(v|pg) ~ min By [— log <d,u9( ))}
9ERk dl

9eR
d,ua
~» max — log
e > tos (4204)
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Examples (1)

Shapes matching

e 119 is (fa) 4 where fy is a smooth deformation of RY and y a

reference shape

e v is a target shape

e goal : find a smooth deformation fy- from y to v

P
/)
|
. NOEe)
S
o

1% fidelity computed

[Refs]:
Feydy, Charlier, Vialard, Peyré (2017)

ﬁ/) o8
TR M
5th 10th 20th 4Oth

(Feydy et al. '17)

Optimal Transport for Diffeomorphic Registration

38,48



Examples (111)

Generative modeling

o (g is (fy)xp where fy is a neural network and p is a simple
distribution (e.g. Gaussian) on a low dimensional space

e v is a target distribution observed through samples

e goal : generate new samples from v using fy(X), X ~ p

Random bedrooms (Arjovsky et al. '14)

[Refs]:
Arjovsky, Chintala, Bottou (2014). Wasserstein GAN
Genevay, Peyré, Cuturi (2017). Learning Generative Models with Sinkhorn Divergences

3948



Properties Needed

Gradient-based minimization

Choose step-size a, start from 8(®) and (ideally) define

o0+ = 9() — V[ D(ppw, V)]-

Requires

e low computational complexity
e ‘“informative” gradients

e low sample complexity

NB: Sample complexity

Let xi,...,x, be i.i.d. samples from p and y1,...,y, bei.id.
samples from v. Let p, = %Zéxn and v, = %25 .. How much
the estimation D(fip, P,) differs from D(u,v) in terms of n?

40 /48



Losses between Probability Measures

41/48



Classes of losses

-divergence (includes KL, Hellinger, TV,...)

integral probability metrics (includes MMD, W)

Sinkhorn divergences

Wasserstein loss

42 /48



p-divergences

Definition
Let ¢ : Ry — Ry be a convex function with ¢(1) = 0 and

superlinear (to simplify):

Jro (%(X)) dv(x) if p<v

D@(/"a V) =
400 otherwise

pointwise comparison of the density (no geometry)

recovers KL when ¢(s) = slog(s)

computational cost O(n) (on a discrete space)

estimation: depends on the class of density considered

43 /48



Integral Probability Metrics

Definition
Let F a subset of functions R? — R that contains 0 and define

Dr(11.v) = sup / F(x)d(s - v)(x)

It F is the set of 1-Lipschitz functions then Dr = Wj.

44 /48



Integral Probability Metrics

Definition
Let F a subset of functions R? — R that contains 0 and define
Drlyur) = sup [ £ =)
feF

It F is the set of 1-Lipschitz functions then Dr = Wj.

Maximum Mean Discrepancy
With F be the 1-ball of a RKHS # with positive definite kernel k,

Dr(u) = llu vl where [l = [ kx.y)du()  du(y)

e computational cost O(n?)
e sample complexity : accuracy in O(1/n)

[Refs]:
Sriperumbudur et al.(2012).0n the Empirical Estimation of Integral Probability Metrics. 44 / 48



Optimal Transport

We know the definition:

C(p,v) = min /cd
(e, v) L

e “good’ geometry

e computational cost: O(n3) or O(n?/€?)

Sample Complexity
E[W2(fin, Dn) — W2 = O(n=2/d) for d > 4 and p =
o [E[W3(fin, On) — W3 (u,v)l] = O(n~*/€) for d > 4 and = v
e there exists better estimators under stronger assumptions
[Refs]:
Weed, Bach (2017). Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein

distance
Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance

45 /48



Sinkhorn divergence

C)(u,v) = min /cd7+77KL(7\,u®1/)

yEN(p,v)

Definition
1 1
D"](Ma V) = Cﬁ(:u7 l/) - EC'!](:“au) - ECn(Va V)
Properties

e converges to C(u,v) asn— 0
e converges to ||u — v|%>. as n —

e it is positive definite if —c is a positive definite kernel

[Refs]:

Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2018). Interpolating between Optimal Transport and MMD using
Sinkhorn Divergences

Ramdas, Trillos, Cuturi, (2017). On Wasserstein two-sample testing and related families of nonparametric tests.

46 /48



Sinkhorn divergence (Il)

Proposition (sample complexity on compacts)
E[1Dy(1 ) — Dy(fins 20)]] = O(n~/2)

Computational Properties

e computation through Sinkhorn algorithm in O(n?log(1/e))

e or, with stochastic algorithms
~» SGD achieves the O(1/4/n) rate

~> the “constants” deteriorate as n — 0.
[Refs]:

Mena, Weed (2019). Statistical bounds for entropic optimal transport: sample complexity and the central limit
theorem.

Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences.
Genevay, Cuturi, Peyré, Bach (2016). Stochastic Optimization for Large-scale Optimal Transport
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Comparison

Loss D computational compl. sample compl. geometry
p-divergence — — -
MMD O(n?) Oo(n™1) -
Sinkhorn div. O(n?log1/e) o(n~1/2) n
Wasserstein 5(n3) or é(n2/62) O(n*2/d) 4+

e (disclaimer) these quantities are not exactly comparable
e ideally, deal with computational and statistical aspects jointly

e for density fitting, study ideally the complexity of the whole
scheme

48 /48



Part 1: qualitative overview

e classical theory

e selection of properties and variants

Part 2: Algorithms and Approximations
e computational aspects

e entropic regularization

e statistical aspects

[Some reference textbooks:]

- Peyré, Cuturi (2018). Computational Optimal Transport

- Santambrogio (2015). Optimal Transport for Applied Mathematicians
- Villani (2008). Optimal Transport, Old and New
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