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A Geometric Motivation

Setting: Probability measures P(X ) on a metric space (X , dist).

Goal

Build a metric on P(X ) consistent with the geometry of (X , dist).

Distance between µ and ν...
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A Geometric Motivation

Setting: Probability measures P(X ) on a metric space (X , dist).

Goal

Build a metric on P(X ) consistent with the geometry of (X , dist).

µ, ν ∈ P(X )

Distance between µ and ν...

?
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Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

µ νtransport
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Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

µ νtransport

Strong modelization power:

• probability distribution, empirical distribution

• weighted undistinguishable particles

• density of a gas, a crowd, cells...
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Early universe

(Brenier et al. ’08)

Color histograms (Delon et al.)

Crowd motion

(Roudneff et al., ’12)

Point clouds



Part 1: Qualitative Overview

• classical theory

• selection of properties and variants

Part 2: Algorithms and Approximations

• entropic regularization

• computational aspects

• statistical aspects
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Outline

Main Theoretical Facts

A Glimpse of Applications

Unbalanced Optimal Transport

Differentiability

Computation and Approximation

Density Fitting

Losses between Probability Measures
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Definition

Ingredients

• Metric spaces X and Y (complete, separable)

• Cost function c : X × Y → R ∪ {∞} (lower bounded, lsc)

• Probability measures µ ∈ P(X ) and ν ∈ P(Y)

X

µ

Y

νtransport
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Transport map

Definition (pushforward)

Let T : X → Y be a map. The pushforward measure of µ by T is

characterized by

T#µ(B) = µ(T−1(B)) for all B ⊂ Y.

If X is a random variable such that Law(X ) = µ, then

Law(T (X )) = T#µ.
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Definition

Ingredients

• Metric spaces X and Y (complete, separable)

• Cost function c : X × Y → R ∪ {∞} (lower bounded, lsc)

• Probability measures µ ∈ P(X ) and ν ∈ P(Y)

X

µ

Y

νtransport

Definition (Monge problem)

inf
T :X→Y

{∫
X
c(x ,T (x))dµ(x) ; T#µ = ν

}

; in some cases: no solution, no feasible point...
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Transport Plans

Definition (Set of transport plans)

Positive measures on X × Y with specified marginals :

Π(µ, ν) :=
{
γ ∈M+(X × Y) : projx# γ = µ, projy# γ = ν

}
ν

µ
γ

Product coupling

γ = µ⊗ ν

ν

µ

γ

Deterministic coupling

γ = (Id× T )#µ

• Generalizes permutations, bistochastic matrices, matchings

• convex, weakly compact 8 / 60
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Definition

Ingredients

• Metric spaces X and Y (complete, separable)

• Cost function c : X × Y → R ∪ {∞} (lower bounded, lsc)

• Probability measures µ ∈ P(X ) and ν ∈ P(Y)

Definition (Optimal transport problem)

C (µ, ν) := min
γ∈Π(µ,ν)

∫
X×Y

c(x , y)dγ(x , y)

X

µ

Y

νtransport

Probabilistic view: min(X ,Y ) {E [c(X ,Y )] : X ∼ µ and Y ∼ ν}
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Duality

Theorem (Kantorovich duality)

min
γ∈Π(µ,ν)

∫
X×Y

c(x , y)dγ(x , y) (Primal)

=

max
φ∈L1(µ)

ψ∈L1(ν)

{∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y) : φ(x) + ψ(y) ≤ c(x , y)

}
(Dual)

Economy: (Primal) centralized vs. (Dual) externalized planification

At optimality

• φ(x) + ψ(y) = c(x , y) for γ almost every (x , y)

• γ is concentrated on a “c-cyclically monotone” set
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Generalizing Convex Analysis Tools (I)

Definition (Cyclical monotonicity)

Γ ⊂ X × Y is c-cyclical monotone iff for all (xi , yi )
n
i=1 ∈ Γn

n∑
i=1

c(xi , yi ) ≤
n∑

i=1

c(xi , yσ(i)) for all permutation σ.

X

Y (x1, y1)

(x2, y2)

(x3, y3)

(x3, y1)

(x2, y3)

(x1, y2)
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Generalizing Convex Analysis Tools (II)

Definition (c-conjugacy)

For X = Y and c : X 2 → R symmetric :

φc(y) := inf
x∈X

c(x , y)− φ(x)

A function φ is c-concave iff there exists ψ such that φ = ψc .

X

R
c(·, y) + cst

φ(·)
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Generalizing Convex Analysis Tools (II)

Definition (c-conjugacy)

For X = Y and c : X 2 → R symmetric :

φc(y) := inf
x∈X

c(x , y)− φ(x)

A function φ is c-concave iff there exists ψ such that φ = ψc .

• on Rd , for c(x , y) = x · y : ψ c-concave ⇔ ψ concave;

• for all φ, φccc = φc ;

• consequence :

C(µ, ν) = max
φ c-concave

{∫
X
φ(x)dµ(x) +

∫
Y
φc(y)dν(y)

}
(Dual)
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Special Cases

• real line (X = Y = R)

• distance cost (c = dist)

• quadratic cost (c = ‖ · − · ‖2)
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Real Line

Theorem (Monotone Rearrangement)

If µ, ν ∈ P(R) and c(x , y) = h(y − x) with h strictly convex:

• unique optimal transport plan γ∗

• denoting F [−1] the quantile functions:

C (µ, ν) =

∫ 1

0
h(F [−1]

µ (s)− F [−1]
ν (s))ds

“Proof”. Here, c-cyclically monotone ⇔ increasing graph. �

X

Y (x1, y1)

(x2, y2)

(x2, y1)

(x1, y2) ν

µ

γ
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Distance Cost

If X = Y and c(x , y) = dist(x , y)

• φ c-concave ⇔ φ 1-Lipschitz

• φc(y) = infx d(x , y)− φ(x) = −φ(y)

• consequence :

C(µ, ν) = max
φ 1-Lipschitz

{∫
X
φ(x)d(µ− ν)(x)

}
(Dual)

X

R
c(·, y)

φ(x)
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Quadratic Cost

Reformulation

• µ, ν ∈ P(Rd) with finite moments of order 2

• cost c(x , y) := 1
2‖y − x‖2

• note that c(x , y) = (‖x‖2 + ‖y‖2)/2− x · y , thus solve:

maxγ∈M+(X×Y)

{∫
X×Y
〈x , y〉dγ(x , y) : γ ∈ Π(µ, ν)

}
(Primal)

Theorem (Brenier ’87)

(i) At optimality, spt γ ⊂ ∂φ, where φ : Rn → R convexe.

(ii) If µ has a density, T = ∇φ is the unique optimal map.

“Proof”. (i) φ(x) + φ∗(y) = x · y , γ-a.e (ii) ∇φ defined L-a.e.
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Transport of Covariance

Whenever the dual potential φ is quadratic: transport of covariance

Theorem (Affine transport map)

Let c(x , y) = 1
2‖y − x‖2 on Rd and let A,B ∈ Sd

+. It holds

min
cov(µ)=A
cov(ν)=B

C (µ, ν) = distb(A,B)2.

• distb(A,B)2 = trA+ trB − 2 tr(A
1
2BA

1
2 )

1
2 Bures metric on Sd

+

• Transport map T = A−1#B ( ·#· geometric mean).

[Refs]:

Bhatia, Jain, Lim (2017). On the Bures-Wasserstein distance between positive definite matrices
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Wasserstein distance

Definition

Let dist : X × X → R be a metric. The Wasserstein distance is

W2(µ, ν) :=

{
min

γ∈M+(X 2)

∫
X 2

dist(x , y)2dγ(x , y) : γ ∈ Π(µ, ν)

} 1
2

• W2 metrizes weak convergence + 2-nd order moments

• if (X , dist) is a geodesic space, so is (P(X ),W2)

• similar definition for Wp with p ≥ 1

Constant speed geodesic for W2 on P(R)

((1− t)Id + tT )#µ
18 / 60



Summing up

First Properties

• rich duality with concepts from convex analysis

• rich structure in specific cases

Properties of the distance W2 on Rd

• optimal plans supported on ∂φ with φ : Rd → R convex

• the space (P(Rd),W2) is a complete geodesic space

• some explicit cases (real line, linear maps)
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Outline

Main Theoretical Facts

A Glimpse of Applications

Unbalanced Optimal Transport

Differentiability

Computation and Approximation

Density Fitting

Losses between Probability Measures

21 / 60



Histogram & shapes processing

Color transfer

color

+

target

=

OT

or

unbalanced OT

Barycenters

(Benamou et al. ’15) (Solomon et al. ’15)
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Histograms and shape processing

• compute barycenter µ̄ of a family (µk)k

• transport maps from µ̄ gives a Hilbertian

parameterization

• apply your favorite data analysis method!

Three PCs from the

MNIST dataset (Seguy

and Cuturi, 2015)

[Refs]:

Seguy, Cuturi (2015). Principal Geodesic Analysis for Probability Measures [...].

Wang, Slepcev, Basu, Ozolek, Rohde (2012). A linear optimal transportation framework.
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Machine learning

Loss for regression:

Learn predictor fθ : X → Y := P({1, . . . , k})
min
θ∈Rd

E(X ,Y )

[
W 2

2 (fθ(X ),Y )
]
.

Predict probability over tags from an image (Frogner et al. 2015)

[Refs]:

Frogner, Zhang, Mobahi, Araya, Poggio (2015). Learning with a Wasserstein loss.
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Machine learning

Loss for density fitting:

Given µ ∈ P(X ), ν ∈ P(Y),

learn map fθ : X → Y

min
θ∈Rd

W 2
2 ((fθ)#µ, ν)

⇒ more in part II.
Generating figure from MNIST

(Genevay et al. 2018)

[Refs]:

Genevay, Peyré, Cuturi (2017). Learning Generative Models with Sinkhorn Divergences.
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Often needed

• differentiability properties

• unbalanced optimal transport
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Unbalanced OT

Optimal Transport has an intrinsic constraint:

µ(X ) = ν(Y)

What if µ(X ) 6= ν(Y)?

Unbalanced Optimal Transport

• often comes up in applications

• normalization is generally a poor choice

• are there approaches that stand out?

Strategy

• preserve key properties of optimal transport

• combine horizontal (transport) and vertical (linear) geometries
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Vertical/Horizontal

V
er

ti
ca

l
H

or
iz

o
n

ta
l

P
ar

ti
a

l
C

o
m

b
in

ed

29 / 60



Optimal Partial Transport

Setting: µ ∈M+(X ) and ν ∈M+(Y) nonnegative measures.

Variational Problem

Choose 0 < m ≤ min{µ(X ), ν(Y)} and solve

min
γ∈M+(R2d )

∫
c(x , y)dγ(x , y)

subject to πx#γ≤µ
πy#γ≤ ν
γ(X × Y) = m

• old & simple modification of the original problem

• “equivalent” formulations: dynamic, entropy-transport

• alternatively, add a sink/source reachable at a certain cost
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Optimal partial transport in 2D (Benamou et al. 2015)

[Refs]:

Benamou, Carlier, Cuturi, Nenna, Peyré (2015) Iterative Bregman Projections for Regularized Transportation

Problems
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Wasserstein Fisher-Rao a.k.a. Hellinger-Kantorovich

Setting: µ ∈M+(X ) and ν ∈M+(Y) nonnegative measures.

Definition

The natural generalization of W2 to this setting is

Ŵ 2
2 (µ, ν) = min

γ∈M+(X×Y)
KL(πx

#γ|µ) + KL(πy
#γ|ν) +

∫
c`(x , y)dγ(x , y)

where c`(x , y) = − log cos2(min{dist(x , y), π/2}).

where KL is the Kullback-Leibler divergence, defined if µ1 � µ2 as

KL(µ1|µ2) =

∫
log

(
dµ1

dµ2

)
dµ1 − µ1(X ) + µ2(X )

Main properties

• geodesic space, Riemannian-like structure

• growth and displacement intertwined

• various explicit formulations: lifted problem, dynamic problem

[Refs]:

Liero, Mielke, Savaré (2015). Optimal Entropy-Transport Problems and a New Hellinger–Kantorovich Distance [...]

Kondratyev, Monsaingeon, Vorotnikov (2015). A New Optimal Transport Distance on the Space of [...] Measures.

Chizat, Peyré, Schmitzer, Vialard (2015). An Interpolating Distance between Optimal Transport and Fisher-Rao.
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Vertical Perturbations

Reminder

Optimal transport between µ, ν ∈ P(Rd) with cost c:

C (µ, ν) = sup
(ϕ,ψ) admissible

∫
Rd

ϕ dµ+

∫
Rd

ψ dν

µ

δ

Perturbed marginal: µ+ εδ

Vertical (linear) derivative

Let δ a signed measure with
∫
δ = 0. If optimal ϕ unique,

d

dε
C (µ+ εδ, ν)|ε=0 =

∫
Rd

ϕ dδ

If ϕ nonunique (up to a constant) ⇒ subdifferential.
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Horizontal Perturbations

Reminder

Optimal transport between µ, ν ∈ P(Rd) with cost c:

C (µ, ν) = inf
γ admissible

∫
(Rd )2

c(x , y) dγ(x , y)

µ

v

Perturbed cost: c(x + εv(x), y) ≈ c(x , y) + ε∇xc(x , y) · v(x)

Horizontal (Wasserstein) perturbation

Let v : Rd → Rd a curl free map. If optimal γ unique,

d

dε
C ((id + εv)#µ, ν)|ε=0 =

∫
(Rd )2

∇xc(x , y) · v(x)dγ(x , y).

Corresponds to the vertical perturbation ∂εµ = −div(vµ)
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Special case of W2

Setting: quadratic cost on Rd , v : Rd → Rd a curl free map.

Differentiability of W2

If unique optimal transport plan γ, then

d

dε

1

2
W 2

2 ((id + εv)#µ, ν)|ε=0 =

∫
(Rd )2

(x − y) · v(x)dγ(x , y)

Next section: regularized W2, always differentiable.
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Discrete Optimal Transport

Discrete Setting

• Discrete measures µ =
∑n

i=1 piδx i , ν =
∑n

j=1 qjδy i
.

• Cost matrix Ci ,j = c(x i , y j)

Linear Program

min
γ∈S(p,q)

∑
i ,j

Ci ,jγi ,j

where S(p, q) = {γ ∈ Rn×m
+ ; pi =

∑
j γi ,j and qj =

∑
i γi ,j}.
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Exact solvers

Algorithm Setting Complexity

Network simplex − Õ(n3)

Hungarian bistochastic O(n3)

Auction Ci ,j integers O(n3)

Efficient methods in R2 or R3

• semi-discrete solver based on Laguerre cells

• minimizing Benamou-Brenier functional (finite elements)

• resolution of Monge-Ampère equation (finite elements)

41 / 60(Levy, 15’)



Approximate Solver

Product coupling 0 < β−1 <∞ Optimal coupling

Entropic regularization (Cuturi ’13)

min
γ∈S(p,q)

∑
i ,j

Ci ,jγi ,j + β−1 KL(γ, µ⊗ ν)

where KL(a, b) =
∑

i ai (log(ai/bi )− 1).

Optimal transport plan as β decreases (Nenna et al. ’15)
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Sinkhorn’s algorithm

Proposition (Optimality Condition)

Define the kernel Ki ,j = exp(−β · Ci ,j). There exists a, b ∈ Rn
+

such that at optimality:

γ∗i ,j = aiKi ,jbj

Sinkhorn’s Algorithm

1. initialize b = (1, . . . , 1) and repeat until convergence

1.1 a← p � (Kb) [rescale rows]

1.2 b ← q � (KTa) [rescale columns]

2. return γ∗i ,j = aiKi ,jbj .

Evolution of (aiKi,jbj)i,j , in (Benamou et al. 2015)
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Complexity Results

One iteration

• matrix/vector product in O(n2) (sometimes better)

• highly parallelizable on GPUs

Solving entropy-regularized OT

• Linear convergence of a, b in Hilbert metric

• ε-accurate solution in O(n2 log(1/ε))

• stochastic algorithms (see later), accelerations

Solving OT

• Sinkhorn’s algorithm allows to build an ε-accurate feasible

transport plan in Õ(n2/ε2)

• best bound in Õ(n2/ε) (active research)

[Refs (see ref therein)]:

Lin, Ho, Jordan (2019). On Efficient Optimal Transport [...]

Dvurechensky, Gasnikov, Kroshnin (2018). Computational Optimal Transport [...]

Blanchet, Jambulapati, Kent, Sidford (2018). Towards Optimal Running Times for Optimal Transport
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Fast In Practice

Overrelaxation and Nonlinear Acceleration

• average/extrapolate the iterates, possibly adaptively

• typical fixed-point algorithms accelerations

• preserves the iteration complexity and parallelizable

[Refs]:

Scieur, D’Aspremont, Bach (2016). Regularized Nonlinear Acceleration

Thibault, Chizat, Dossal, Papadakis (2017). Overrelaxed Sinkhorn Algorithm for Regularized Optimal Transport 45 / 60



Generalization

Solving barycenters, unbalanced OT, inverse problems...

min
∑

Ci ,jγi ,j + F1(γ · 1n) + F2(γT · 1n) + β−1 KL(γ, µ⊗ ν)

Scaling iterates (alternate maximization on the dual)

1. initialize b = 1n and repeat until convergence

1.1 a← proxF1
(Kb)� (Kb) [descent on rows]

1.2 b ← proxF2
(KTa)� (KTa) [descent on columns]

2. return γ∗i ,j = aiKi ,jbj .

proxF (s̄) := arg min
s
{F (s) + εKL(s|s̄)}

[Refs]:

Chizat, Peyré, Schmitzer, Vialard (2016). Scaling algorithms for unbalanced optimal transport problems 46 / 60
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Density Fitting

Ingredients

• a parametric family θ ∈ Rk → µθ ∈ P(Rd)

• a target ν ∈ P(Rd)

General problem

Chose a loss D : P(Rd)2 → [0,∞] and solve

min
θ∈Rk

D(µθ, ν).

×

•
θ∗

θ0

Rk

×
µθ0

θ 7→ µθ

×ν

P(Rd)

•
µθ∗

D(µθ∗ , ν)

Which loss to chose?
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Examples (I)

Statistical inference

• µθ is an exponential family

• ν is known through samples ν̂ = 1
n

∑n
i=1 δxi

Choosing D = KL gives the maximum likelihood estimator:

min
θ∈Rk

KL(ν|µθ) ; min
θ∈Rk

Ex∼ν

[
− log

(
dµθ
dL (x)

)]
; max

θ∈Rk

1

n

n∑
i=1

log

(
dµθ
dL (xi )

)
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Examples (II)

Shapes matching

• µθ is (fθ)#µ where fθ is a smooth deformation of Rd and µ a

reference shape

• ν is a target shape

• goal : find a smooth deformation fθ∗ from µ to ν

(Feydy et al. ’17)

[Refs]:

Feydy, Charlier, Vialard, Peyré (2017). Optimal Transport for Diffeomorphic Registration
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Examples (III)

Generative modeling

• µθ is (fθ)#µ where fθ is a neural network and µ is a simple

distribution (Gaussian) on a low dimensional space

• ν is a target distribution observed through samples

• goal : generate new samples from ν using fθ(X ), X ∼ µ

Random bedrooms (Arjovsky et al. ’14)

[Refs]:

Arjovsky, Chintala, Bottou (2014). Wasserstein GAN

Genevay, Peyré, Cuturi (2017). Learning Generative Models with Sinkhorn Divergences

51 / 60



Properties Needed

Gradient-based minimization

Choose step-size η, start from θ(0) and (ideally) define

θ(k+1) = θ(k) − η∇θ[D(µθ(k) , ν)].

Requires

• differentiability

• low computational complexity

• low sample complexity

• to incorporate geometry

52 / 60
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Classes of losses

• ϕ-divergence (includes KL, Hellinger, TV,...)

• integral probability metrics (includes MMD, W1)

• Sinkhorn divergences

• Wasserstein loss

54 / 60



ϕ-divergences

Definition

Let ϕ : R+ → R+ be a convex function with ϕ(1) = 0 and

superlinear (to simplify):

Dϕ(µ, ν) =


∫
Rd ϕ

(
dµ
dν (x)

)
dν(x) if µ� ν

+∞ otherwise

• pointwise comparison of the density (no geometry)

• recovers KL when ϕ(s) = s log(s)

• computational cost O(n) (on a discrete space)

• estimation: depends on the class of density considered
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Integral Probability Metrics

Definition

Let F a subset of functions Rd → R that contains 0 and define

DF (µ, ν) = sup
f ∈F

∫
Rd

f (x)d(µ− ν)(x)

It F is the set of 1-Lipschitz functions then DF = W1.

Maximum Mean Discrepancy

Let F be the 1-ball of a RKHS H with kernel k, then

DF (µ, ν) = ‖µ− ν‖2
k where ‖µ‖2

k :=

∫∫
k(x , y)dµ(x)⊗ dµ(y)

• computational cost O(n2)

• sample complexity : accuracy in O(1/n)

[Refs]:

Sriperumbudur et al.(2012).On the Empirical Estimation of Integral Probability Metrics.
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Optimal Transport

We know the definition...

C (µ, ν) = min
γ∈Π(µ,ν)

∫
cdγ

• “a lot” of geometry

• computational cost: O(n3) or O(n2/ε2)

Sample Complexity

• |E[W 2
2 (µ̂n, ν̂n)−W 2

2 (µ, ν)|] = O(n−2/d) for d > 4

• there exists better estimators if the density is assumed smooth

[Refs]:

Weed, Bach (2017). Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein

distance

Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance.
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Sinkhorn divergence

Cβ(µ, ν) = min
γ∈Π(µ,ν)

∫
cdγ + β−1 KL(γ|µ⊗ ν)

Definition

Dβ(µ, ν)2 := 2Cβ(µ, ν)− Cβ(µ, µ)− Cβ(ν, ν)

Properties

• converges to C (µ, ν) as β →∞
• converges to ‖µ− ν‖2

−c as β → 0

• it is positive definite if e−βc is a positive definite kernel

[Refs]:

Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2018). Interpolating between Optimal Transport and MMD using

Sinkhorn Divergences

Ramdas, Trillos, Cuturi, (2017). On Wasserstein two-sample testing and related families of nonparametric tests.
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Sinkhorn divergence (II)

Proposition (sample complexity)

E[|Dβ(µ, ν)− Dβ(µ̂n, ν̂n)|] = O(1/
√
n)

Computational Properties

• computation through Sinkhorn algorithm in O(n2 log(1/ε))

• or, with stochastic algorithms

; SGD achieves the O(1/
√
n) rate

; the “constants” deteriorate as β →∞.
[Refs]:

Mena, Weed (2019). Statistical bounds for entropic optimal transport: sample complexity and the central limit

theorem.

Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences.

Genevay, Cuturi, Peyré, Bach (2016). Stochastic Optimization for Large-scale Optimal Transport
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Comparison

Loss D computational compl. sample compl. geometry

ϕ-divergence − − - -

MMD O(n2) O(n−1) -

Sinkhorn div. Õ(n2 log 1/ε) O(n−1/2) +

Wasserstein Õ(n3) or Õ(n2/ε2) O(n−2/d) ++

• (disclaimer) these quantities are not exactly comparable

• ideally, deal with computational and statistical aspects jointly

• for density fitting, study ideally the complexity of the whole

scheme
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Part 1: qualitative overview

• classical theory

• selection of properties and variants

Part 2: Algorithms and Approximations

• computational aspects

• entropic regularization

• statistical aspects

[Some reference textbooks:]

- Peyré, Cuturi (2018). Computational Optimal Transport

- Santambrogio (2015). Optimal Transport for Applied Mathematicians

- Villani (2008). Optimal Transport, Old and New
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