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A Geometric Motivation

Setting: Probability measures P(X’) on a metric space (X, dist).

Goal
Build a metric on P(X) consistent with the geometry of (X, dist).
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A Geometric Motivation

Setting: Probability measures P(X’) on a metric space (X, dist).

Goal
Build a metric on P(X) consistent with the geometry of (X, dist).

p,v € P(X)

‘ Distance between p and v...
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Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

M transport V
M
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Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

M transport V
M

Strong modelization power:

e probability distribution, empirical distribution
e weighted undistinguishable particles
e density of a gas, a crowd, cells...

Early universe Crowd motion
(Brenier et al. '08) (Roudneff et al., '12)

Point clouds

Color histograms (Delon et al.)
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Part 1: Qualitative Overview
e classical theory

e selection of properties and variants

Part 2: Algorithms and Approximations
e entropic regularization

e computational aspects

e statistical aspects



Main Theoretical Facts

A Glimpse of Applications
Unbalanced Optimal Transport
Differentiability

Computation and Approximation
Density Fitting

Losses between Probability Measures
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Main Theoretical Facts
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Ingredients

e Metric spaces X and ) (complete, separable)
e Cost function ¢ : X x ) — R U {oo} (lower bounded, Isc)
e Probability measures p € P(X) and v € P())

' transport vV
///\\J/\\\#//”//\\\\\;

X y
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Transport map

Definition (pushforward)
Let T : X — Y be a map. The pushforward measure of y by T is
characterized by

Tyu(B) = u(T1(B)) forall BC Y.
If X is a random variable such that Law(X) = y, then

Law(T(X)) = Txp.
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Ingredients

e Metric spaces X and ) (complete, separable)
e Cost function ¢ : X x ) — R U {oo} (lower bounded, Isc)
e Probability measures € P(X) and v € P())

' transport vV
///\\J/\\\g//”’//\\\\\g

X y

Definition (Monge problem)

150 { /X e, Tl - T#M_u}

T:-X—=)Y

~> in some cases: no solution, no feasible point...
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Transport Plans

Definition (Set of transport plans)

Positive measures on X' x ) with specified marginals :

M(u,v) == {7 € M1(X x V) prof 7 = . profy 7 = v}

Az -~
N
Product coupling Deterministic coupling
T=p®v v=(Idx T)gp

e Generalizes permutations, bistochastic matrices, matchings
e convex, weakly compact 8/60



Transport Plans

Definition (Set of transport plans)

Positive measures on X x ) with specified marginals :

M(p,v) = {’V € My(X x V) : projly v = p, projl, v = 1/}

Product couplin
Ping Cycle-free coupling

Y=p®v

e Generalizes permutations, bistochastic matrices, matchings
e convex, weakly compact
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Ingredients

e Metric spaces X and ) (complete, separable)
e Cost function ¢ : X x ) — R U {oo} (lower bounded, Isc)
e Probability measures o € P(X) and v € P())

Definition (Optimal transport problem)

C(p,v):= min / c(x,y)dv(x,y)
yeN(p,v) Jxxy

M transport ¥
M

X y

Probabilistic view: min(x y){E[c¢(X,Y)]: X ~ pand Y ~ v}
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Theorem (Kantorovich duality)

min /x c(x,y)dv(x,y) (Primal)

YEN(p,v) XY

i’Zm‘d{ [ orant) + /y zp(y)dv(y):¢(x)+¢(y>gc(x,y)} (Dual)

Economy: (Primal) centralized vs. (Dual) externalized planification

DI Optimal plan Optimal prices
08 08 08

®
07 R 07 10 g 10

06 06 A | os 08 fros
os os 0s

06 Jt 06
04 04
04 |foa
03 03 03
02 ; 02 02 02 |fo2
.

o1 01 oo Moo
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Theorem (Kantorovich duality)

min /x c(x,y)dv(x,y) (Primal)

YEN(p,v) XY

Q?(?;{ [ otdut) + /y zp(y)du(y):¢(x)+w(y)3c(x,y)} (Dual)
Yel (v

Economy: (Primal) centralized vs. (Dual) externalized planification

DI Optimal plan Optimal prices
08 08 08

®
07 R 07 10 g 10

06 06 A | os 08 fros

os os 0s

06 Jt 06
04 04
04 |foa
03 03 03
02 ; 02 02 02 |fo2
.
04 o6 08

o1 01 oo Moo

At optimality
o ¢(x)+ ¥(y) = c(x,y) for v almost every (x,y)

e v is concentrated on a “c-cyclically monotone” set
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Generalizing Convex Analysis Tools (1)

Definition (Cyclical monotonicity)

I C X x Y is c-cyclical monotone iff for all (x;,y;)7_; € "

n n

Z c(xi,yi) < Z c(Xi, Yo(i)) for all permutation o.
i=1 i=1
(x3,¥3)
O
(x2. y2)
O
Y1 ()
@)




Generalizing Convex Analysis Tools (1)

Definition (Cyclical monotonicity)

I C X x Y is c-cyclical monotone iff for all (x;,y;)7_; € "

Z c(xi,yi) < Z c(Xi, Yo(i)) for all permutation o.
i=1 i=1
(x3,¥3)
(x2:¥3) OO
(x1:¥2) (32, y2)
@, O
Y| (an)
@) O
(>3: 1)
X
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Generalizing Convex Analysis Tools (1)

Definition (c-conjugacy)
For X =Y and ¢ : X% — R symmetric :

#(y) i= inf c(x,9) = 9(x)

A function ¢ is c-concave iff there exists v such that ¢ = ¥°.
c(-,y) +cst

=
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Generalizing Convex Analysis Tools (1)

Definition (c-conjugacy)

For X =Y and ¢ : X% — R symmetric :

¢°(y) = inf c(x,y) — ¢(x)

xeX

A function ¢ is c-concave iff there exists v such that ¢ = ¥°.

e on RY, for c(x,y) = x - y: 1) c-concave <> ¢ concave;

o for all ¢, <€ = ¢¢;

® consequence :

Cu) =, max { [ sauts )+ [ e M)} (Ou)

(1) c-concave

12/60



Special Cases

e real line (¥ =Y =R)
e distance cost (¢ = dist)

e quadratic cost (c = || - — - ||?)
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Theorem (Monotone Rearrangement)
If u,v € P(R) and c(x, y) = h(y — x) with h strictly convex:
e unique optimal transport plan v*

e denoting FI~1I the quantile functions:

1
Clu,v) = /0 h(FL1(s) — FI-(s))ds

“Proof”. Here, c-cyclically monotone <> increasing graph. [J

(2{y2)
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Distance Cost

If X =Y and c(x, y) = dist(x, y)
e ¢ c-concave &< ¢ 1-Lipschitz

e ¢°(y) = infxd(x,y) — d(x) = —o(y)

® consequence :

Clv) = ¢{ [ ratu— u)(x)} (Dual)
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Quadratic Cost

Reformulation
e 1, v € P(R?) with finite moments of order 2
e cost c(x,y) = Ly — x|

e note that c(x,y) = (||x||> + [lyl|?)/2 — x - y, thus solve:

max,ean,ce { [ benrly) i € i %) (Primal)
X

Theorem (Brenier ’87)
(i) At optimality, spty C 9¢, where ¢ : R" — R convexe.
(ii) If i has a density, T = V¢ is the unique optimal map.

“Proof”. (i) ¢(x) + ¢*(y) = x - y, y-a.e (ii) V¢ defined L-a.e.
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Transport of Covariance

Whenever the dual potential ¢ is quadratic: transport of covariance
Theorem (Affine transport map)
Let c(x,y) = %|ly — x||? on R? and let A, B € S¢. It holds

min  C(u,v) = disty(A, B)2.

cov(p)=A
cov(v)=B

e disty(A,B)?> =trA+trB— 2tr(A%BA%)% Bures metric on S¢

e Transport map T = A~ 14#B ( -#- geometric mean).

AN

[Refs]:
Bhatia, Jain, Lim (2017). On the Bures-Wasserstein distance between positive definite matrices
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Wasserstein distance

Definition
Let dist : X x X — R be a metric. The Wasserstein distance is

Wa(u, v) :={ min /dist(x,y)2dv(x7y):7€”(uw)}

YEM(X2?) J x2

o > metrizes weak convergence + 2-nd order moments
e if (X, dist) is a geodesic space, so is (P(X), Wa)
e similar definition for W, with p > 1

A. 1A

Constant speed geodesic for W, on P(R)
(L=t)d+tT)pp
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First Properties

e rich duality with concepts from convex analysis

e rich structure in specific cases

Properties of the distance W, on RY
e optimal plans supported on 9¢ with ¢ : R — R convex
e the space (P(RY), W,) is a complete geodesic space

e some explicit cases (real line, linear maps)

20/ 60



A Glimpse of Applications
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Histogram & shapes processing

Color transfer

color

Barycenters
”04+ ‘&‘ e
% % %+ + e =g
% % % %+ e 8 °g6
% % % % K g ©
.o 'c ’l *l * ‘
(Benamou et al. '15) (Solomon et al. '15)
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Histograms and shape processing

JN3 9

35 8

e compute barycenter i of a family (1)« a2 ala
e transport maps from ji gives a Hilbertian ol b ’
parameterization : _5 3

e apply your favorite data analysis method! - 3 -
A 3

Three PCs from the
MNIST dataset (Seguy
and Cuturi, 2015)

[Refs]:
Seguy, Cuturi (2015). Principal Geodesic Analysis for Probability Measures |[...]
Wang, Slepcev, Basu, Ozolek, Rohde (2012). A linear optimal transportation framework

23/60



Machine learning

Loss for regression:
Learn predictor fp : X — ) := P({1,...,k})

in E W2(f(X), Y)].
min Eox,y) (W3 (%(X), V)]

(a) Flickr user tags: zoo, run, (b) Flickr user tags: travel, ar- (c) Flickr user tags: spring, race,
mark; our proposals: running, chitecture, tourism; our proposals: ~training; our proposals: road, bike,
summer, fun; baseline proposals: sky, roof, building; baseline pro- trail; baseline proposals: dog,
running, country, lake. posals: art, sky, beach. surf, bike.

Predict probability over tags from an image (Frogner et al. 2015)

[Refs]:
Frogner, Zhang, Mobahi, Araya, Poggio (2015). Learning with a Wasserstein loss.
(2015) 24 /60



o0
=
£
b
]
2
)
=
=
o
=

NSNS SSN NS S e eSS NN NN NN
N e L L L LN NN
RN LN N N N NN
A Lt S S NN NN
B ol o ST NN NN
IIIIII TrCrrCCTRIRNNN
————— T rrrrTTITTTIRIRY
|||||||| CorTrTTTINIILY
————— T T T TTANNNND Y

—————rTrrrrIANNNNS Y

lllllll rrrrrdddaanmg .y
mmmmmenrrrsddaddan e s

O L TR R R R PR PR

0 00 00 00 (0 (0 ¢ ¢
0 00 09 00 0 (0 ) O
0 0 00 0 0 0 © O

559999 veee
EICICICRCRCRPIPIPRAN
000000V vvee
NBMOMMOON0000000II 9N
NHHMMNB0VNO000000IINY
Lhhhihhwuuo0000VVVVN Y
LLLbLLbLLLLLOOOQVVVIVY

#,U,,V)

y )
T s
g
S&
=8

Loss for density fitting:
Given p € P(X), v € P(Y),

learn map fy

= more in part Il.

Generating figure from MNIST

(Genevay et al. 2018)

[Refs]:

Learning Generative Models with Sinkhorn Divergences.

Genevay, Peyré, Cuturi (2017)
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Often needed

o differentiability properties

e unbalanced optimal transport

26 / 60



Unbalanced Optimal Transport
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Unbalanced OT

Optimal Transport has an intrinsic constraint:
px) =v()

What if pu(X) # v(Y)?
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Optimal Transport has an intrinsic constraint:
px) =v()

What if pu(X) # v(Y)?
Unbalanced Optimal Transport
e often comes up in applications
e normalization is generally a poor choice

e are there approaches that stand out?
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Unbalanced OT

Optimal Transport has an intrinsic constraint:
px) =v()

What if pu(X) # v(Y)?
Unbalanced Optimal Transport
e often comes up in applications
e normalization is generally a poor choice

e are there approaches that stand out?

Strategy
e preserve key properties of optimal transport

e combine horizontal (transport) and vertical (linear) geometries

28 /60
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Optimal Partial Transport

Setting: pr € M (X) and v € M ()) nonnegative measures.

Variational Problem
Choose 0 < m < min{u(X),v(Y)} and solve

e AT:?RM) / c(x, y)dv(x, y)
subject to 7y <p

77;7 <v

WX xY)=m

e old & simple modification of the original problem
e ‘“equivalent” formulations: dynamic, entropy-transport
e alternatively, add a sink/source reachable at a certain cost

30,60



[Refs]:

Benamou, Carlier, Cuturi, Nenna, Peyré (2015) lterative Bregman Projections for Regularized Transportation

Problems

o

Optimal partial transport in 2D (Benamou et al. 2015)
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Wasserstein Fisher-Rao a.k.a. Hellinger-Kantorovich

Setting: pr € M (X) and v € M ()) nonnegative measures.
Definition
The natural generalization of W, to this setting is

W2 (u,v) = in  KL(m KL(r d
Bu) = _min | KLl) + KLep ) + [ alxy)dr(cy)
where c;(x,y) = — log cos?(min{dist(x, y), 7/2}).

where KL is the Kullback-Leibler divergence, defined if u; < o as

KL(pa|p2) = / log (ju ) dpa — pa(X) + p2(X)

32/60



Wasserstein Fisher-Rao a.k.a. Hellinger-Kantorovich

Setting: pr € M (X) and v € M ()) nonnegative measures.
Definition
The natural generalization of W, to this setting is

W) = _ min | KLmle) + KLmpl) + [ alxy)dr(cy)

where c;(x,y) = — log cos?(min{dist(x, y), 7/2}).
Main properties

e geodesic space, Riemannian-like structure

e growth and displacement intertwined

e various explicit formulations: lifted problem, dynamic problem
[Refs]:
Liero, Mielke, Savaré (2015). Optimal Entropy-Transport Problems and a New Hellinger—Kantorovich Distance [...]
Kondratyev, Monsaingeon, Vorotnikov (2015). A New Optimal Transport Distance on the Space of [...] Measures.

Chizat, Peyré, Schmitzer, Vialard (2015). An Interpolating Distance between Optimal Transport and Fisher-Rao.
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Differentiability
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Vertical Perturbations

Reminder

Optimal transport between 1, v € P(R?) with cost c:

C(p,v) = sup /«pdwr/ Y dv
R4 R4

(v,%) admissible
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Vertical Perturbations

Reminder

Optimal transport between 1, v € P(R?) with cost c:

C(p,v) = sup /«pdwr/ Y dv
R4 R4

(v,%) admissible

N\ M
ﬁ”\
//
0

Perturbed marginal: u + €6
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Vertical Perturbations

Reminder

Optimal transport between 1, v € P(R?) with cost c:

C(p,v) = sup /«Pdwr/ Y dv
R4 R4

(v,%) admissible

N M
TT\
//
JNAYAN
0

Perturbed marginal: u + €6
Vertical (linear) derivative

Let § a signed measure with [§ = 0. If optimal ¢ unique,

d
IC(M—FG(S,V)‘GZO = /Rdgadé
34 /60



Horizontal Perturbations

Reminder

Optimal transport between 1, v € P(R?) with cost c:

~ admissible

C(u,v) = inf /(Rd)QC(X,y)d'V(X,y)

35,60



Horizontal Perturbations

Reminder

Optimal transport between 1, v € P(R?) with cost c:

~ admissible

1%
%\j
\
y A\ \\\

/ \

C(u,v) = inf /(Rd)QC(X,y)d'V(X,y)

<R

Perturbed cost: c(x + ev(x),y) = c(x,y) + eVxc(x,y) - v(x)

35,60



Horizontal Perturbations

Reminder

Optimal transport between 1, v € P(R?) with cost c:

~ admissible

A\
/ \\;ﬁ \
< < > > —

v

C(u,v) = inf /(Rd)QC(X,y)d'V(X,y)

Perturbed cost: c(x + ev(x),y) = c(x,y) + eVxc(x,y) - v(x)
Horizontal (Wasserstein) perturbation
Let v : R — R? a curl free map. If optimal  unique,

d .
C(+ e o= [ Taclxy) - vix)dr(x).
€ (R9)2

35,60



Special case of W,

Setting: quadratic cost on R, v : RY — R9 a curl free map.

Differentiability of W,
If unique optimal transport plan v, then

il 2((i €V V)le=0 = xX—y)-v(x X
de2 Bt o= [ () v(daty
':f-a. ':fu.
N A% 5
7 Y %
= ’

3760



Special case of W,

Setting: quadratic cost on R, v : RY — R9 a curl free map.

Differentiability of W,
If unique optimal transport plan v, then

d 1 1 = X — s VX X
0 2W2((1d+ev)#,u,l/)|e=o—/(Rd)z( y) - v(x)dy(x,y)
':f-a. ':3'3-
\ / 'q /‘\"1
, Vi
; (4

Next section: regularized W5, always differentiable. 37 /60



Computation and Approximation
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Discrete Optimal Transport

Discrete Setting
o Discrete measures 1 =311 pidx;, v =D, q;0y,.

e Cost matrix G;; = c(x;, y;)

Linear Program

min Z Cijvij

Y€S(p,q)
where S(p,q) = {y € RI*™; p; = 3";vij and q; =3, 7ij}-

o

[ ]
°

. 'Y )

®

. . Q0.

® ([}

°* @ e o0 40 /60



Discrete Optimal Transport

Discrete Setting
o Discrete measures 1 =311 pidx;, v =D, q;0y,.

e Cost matrix G;; = c(x;, y;)

Linear Program

min Z Cijvij

v€S(p;q)

where S(p,q) = {y € RI*™; p; = 3";vij and q; =3, 7ij}-

°* @ e o0 40 /60



Exact solvers

Algorithm Setting Complexity
Network simplex - O(n?)
Hungarian bistochastic O(n%)
Auction Cjj integers O(n%)

Efficient methods in R? or R3

e semi-discrete solver based on Laguerre cells
e minimizing Benamou-Brenier functional (finite elements)

e resolution of Monge-Ampere equation (finite elements)

(Levy, 15')

41/60



Approximate Solver

Optimal coupling

42 /60



Approximate Solver

Product coupling 0<pf <o Optimal coupling

Entropic regularization (Cuturi '13)

min Cijvij + B KL(y, p® v
v€S(p,q) %: s ( )

where KL(a, b) = >, aj(log(ai/bi) — 1).

AN

Optimal transport plan as 3 decreases (Nenna et al. '15)

42 /60



Sinkhorn’s algorithm

Proposition (Optimality Condition)
Define the kernel Kj; = exp(—f3 - G ;). There exists a, b € R’}
such that at optimality:

iy = aiKijb

43 /60



Sinkhorn’s algorithm

Proposition (Optimality Condition)
Define the kernel Kj; = exp(—f3 - G ;). There exists a, b € R’}
such that at optimality:

Vi = aiKijbj

Sinkhorn’s Algorithm
1. initialize b= (1,...,1) and repeat until convergence

1.1 a+ po(Kb) [rescale rows]
1.2 b+ qo(KTa) [rescale columns]

2. return 'y?‘J = a;K; jb;.

Evolution of (a;Kij;bj)ij, in (Benamou et al. 2015)
43 /60



Complexity Results

One iteration
e matrix/vector product in O(n?) (sometimes better)

e highly parallelizable on GPUs

Solving entropy-regularized OT
e Linear convergence of a, b in Hilbert metric
e c-accurate solution in O(n?log(1/¢))

e stochastic algorithms (see later), accelerations

44 /60



Complexity Results

One iteration
e matrix/vector product in O(n?) (sometimes better)

e highly parallelizable on GPUs

Solving entropy-regularized OT
e Linear convergence of a, b in Hilbert metric
e c-accurate solution in O(n?log(1/¢))

e stochastic algorithms (see later), accelerations

Solving OT
e Sinkhorn's algorithm allows to build an e-accurate feasible
transport plan in O(n?/e?)
e best bound in O(n?/€) (active research)

[Refs (see ref therein)]:

Lin, Ho, Jordan (2019). On Efficient Optimal Transport |[...]

Dvurechensky, Gasnikov, Kroshnin (2018). Computational Optimal Transport [...]

Blanchet, Jambulapati, Kent, Sidford (2018). Towards Optimal Running Times for Optimal Transport 44 / 60



Fast In Practice

Overrelaxation and Nonlinear Acceleration
e average/extrapolate the iterates, possibly adaptively
e typical fixed-point algorithms accelerations

e preserves the iteration complexity and parallelizable

Log-log plot Semilog plot
—— original —— original
1071 RNA (A =10"1%) 1071 RNA (A=10"19)
— RNA(A=107%) — RNA(A=107%)
w1073 w1073
g g
] T
2 8
S 10-° 1073
5 5
£ £
g 107 g 107
10-° 1077
100 10! 10? 0 100 200 300 400 500 600
niter niter

[Refs]:
Scieur, D'Aspremont, Bach (2016). Regularized Nonlinear Acceleration
Thibault, Chizat, Dossal, Papadakis (2017). Overrelaxed Sinkhorn Algorithm for Regularized Optimal Transport 45 / 60



Generalization

Solving barycenters, unbalanced OT, inverse problems...

min > Gijvij+ Fi(y - 1n) + Fa(y" - 1n) + 87 KL(7, n ®v)

F

Tﬂ.':

[c@e e

Scaling iterates (alternate maximization on the dual)

1. initialize b = 1, and repeat until convergence

1.1 a < proxg (Kb) @ (Kb) [descent on rows]
1.2 b+ proxg,(K"a) @ (KTa) [descent on columns]

2. return 77‘J = a;K; jb;.

proxg(3) := arg msin{F(s) + eKL(s|3)}

[Refs]:
Chizat, Peyré, Schmitzer, Vialard (2016). Scaling algorithms for unbalanced optimal transport problems 46 / 60



Density Fitting
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Density Fitting

Ingredients
e a parametric family § € R¥ — yp € P(RY)
e a target v € P(RY)

General problem
Chose a loss D : P(R9)? — [0, o0] and solve

min D(ug, V).
jally (1o, v)

v

X
0 Mo D(N’H’: 1/)’\
//\

X
Hao
X 90

Rk

P(RY) 48 /60



Examples (1)

Statistical inference
® (i is an exponential family

e v is known through samples 7 = %27:1 Ox;
Choosing D = KL gives the maximum likelihood estimator:
min KL(v|pg) ~ min By [— log <d,u9( ))}
9ERk dl

9eR
d,ua
~» max — log
e > tos (4204)

49 /60



Examples (1)

Shapes matching

e yug is (fy)4p where fy is a smooth deformation of R and 1 a
reference shape

e v is a target shape

e goal : find a smooth deformation fy« from p to v

s
/x/
| o v
\ fO/ { |29
i Q Lt ) S} B / > L]
15% fidelity computed 5th 20th 40t

(Feydy et al. '17)

[Refs]:
Feydy, Charlier, Vialard, Peyré (2017). Optimal Transport for Diffeomorphic Registration

50/ 60



Examples (111)

Generative modeling

o (g is (fy)xp where fy is a neural network and p is a simple
distribution (Gaussian) on a low dimensional space

e v is a target distribution observed through samples

e goal : generate new samples from v using fy(X), X ~ p

Random bedrooms (Arjovsky et al. '14)

[Refs]:
Arjovsky, Chintala, Bottou (2014). Wasserstein GAN
Genevay, Peyré, Cuturi (2017). Learning Generative Models with Sinkhorn Divergences

51/60



Properties Needed

Gradient-based minimization

Choose step-size 17, start from (%) and (ideally) define
U1 = 0 — vy [D(p1g09, v)].

Requires

o differentiability
e low computational complexity
e low sample complexity

e to incorporate geometry
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Losses between Probability Measures
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Classes of losses

-divergence (includes KL, Hellinger, TV,...)

integral probability metrics (includes MMD, W)

Sinkhorn divergences

Wasserstein loss
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p-divergences

Definition
Let ¢ : Ry — Ry be a convex function with ¢(1) = 0 and

superlinear (to simplify):

Jro (%(X)) dv(x) if p<v

D@(/"a V) =
400 otherwise

pointwise comparison of the density (no geometry)

recovers KL when ¢(s) = slog(s)

computational cost O(n) (on a discrete space)

estimation: depends on the class of density considered
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Integral Probability Metrics

Definition
Let F a subset of functions R? — R that contains 0 and define
Drlyur) = sup [ £ =)
feF

It F is the set of 1-Lipschitz functions then Dr = Wj.

Maximum Mean Discrepancy
Let F be the 1-ball of a RKHS H with kernel k, then

Dr(uv) = lu—v|2 where [|u]2 == / / k(% y)du(x) ® du(y)

e computational cost O(n?)
e sample complexity : accuracy in O(1/n)

[Refs]:
Sriperumbudur et al.(2012).0n the Empirical Estimation of Integral Probability Metrics. 56 / 60



Optimal Transport

We know the definition...

C(p,v) = min /cd
(e, v) L

e “alot” of geometry

e computational cost: O(n3) or O(n?/€?)

Sample Complexity
2(n 1 2 _ —2/d
o [E[WZ(fin, D) = W3 (1, v)|] = O(n=?/9) for d > 4
e there exists better estimators if the density is assumed smooth
[Refs]:
Weed, Bach (2017). Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein

distance
Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance
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Sinkhorn divergence

Cs(p,v) = min /Cdv+/)"1KL(vlu®V)
yeN(p,v)

Definition
Ds(p,v)? == 2Cs(p,v) — Ca(p, 1) — Cp(v,v)

Properties

e converges to C(p,v) as f — oo
e converges to || —v|*.as B —0

e it is positive definite if e 5¢ is a positive definite kernel

[Refs]:

Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2018). Interpolating between Optimal Transport and MMD using
Sinkhorn Divergences

Ramdas, Trillos, Cuturi, (2017). On Wasserstein two-sample testing and related families of nonparametric tests.
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Sinkhorn divergence (Il)

Proposition (sample complexity)

E[|Ds(p,v) — Ds(fin, 2n)ll = O(1/+/n)
Computational Properties

e computation through Sinkhorn algorithm in O(n?log(1/e))
e or, with stochastic algorithms
~> SGD achieves the O(1/4/n) rate

~» the “constants” deteriorate as § — oo.
[Refs]:

Mena, Weed (2019). Statistical bounds for entropic optimal transport: sample complexity and the central limit
theorem.

Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences
Genevay, Cuturi, Peyré, Bach (2016). Stochastic Optimization for Large-scale Optimal Transport
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Comparison

Loss D computational compl. sample compl. geometry
p-divergence — — -
MMD O(n?) Oo(n™1) -
Sinkhorn div. O(n?log1/e) o(n~1/2) n
Wasserstein 5(n3) or é(n2/62) O(n*2/d) 4+

e (disclaimer) these quantities are not exactly comparable
e ideally, deal with computational and statistical aspects jointly

e for density fitting, study ideally the complexity of the whole
scheme
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Part 1: qualitative overview

e classical theory

e selection of properties and variants

Part 2: Algorithms and Approximations
e computational aspects

e entropic regularization

e statistical aspects

[Some reference textbooks:]

- Peyré, Cuturi (2018). Computational Optimal Transport

- Santambrogio (2015). Optimal Transport for Applied Mathematicians
- Villani (2008). Optimal Transport, Old and New



	Introduction
	Main Theoretical Facts
	A Glimpse of Applications
	Unbalanced Optimal Transport
	Differentiability
	Computation and Approximation
	Density Fitting
	Losses between Probability Measures

