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Parametric supervised machine learning

e given training data (x;,y;) € RY xR, i € {1,...,n}
e build a function h such that h(x) ~ y for unseen data (x, y)

e prediction of the form h(w,x) € R with parameters w € RP

Examples

e computer vision
e advertisement

e audio processing, natural language processing, medical

imaging ...
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What are the types of models?

Linear (in the largest sense)

Linear regression, ad-hoc features, random features, kernel methods
h(W,X) =w- ¢(X)

~» most of statistics and optimization theory
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What are the types of models?

Linear (in the largest sense)

Linear regression, ad-hoc features, random features, kernel methods
h(W,X) =w- ¢(X)

~» most of statistics and optimization theory

Non-linear
h(w, x) given by a differentiable program, such as a computational
graph (including neural networks)

~ when last operation is linear: interpretation as learnt features
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Parametric supervised machine learning

e given training data (x;,y;) € RY x R, i € {1,...,n}
e build a function h such that h(x) ~ y for unseen data (x, y)
e prediction of the form h(w, x) € R with parameters w € RP

The goal is to predict well, i.e. minimizing the population loss:

min R(h(w)) = E, ,loss(y, f(w, x))

weRP
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Parametric supervised machine learning

e given training data (x;,y;) € RY x R, i € {1,...,n}
e build a function h such that h(x) ~ y for unseen data (x, y)
e prediction of the form h(w, x) € R with parameters w € RP

The goal is to predict well, i.e. minimizing the population loss:

min R(h(w)) = E, ,loss(y, f(w, x))

weRP

Empirical risk minimization

min fZloss(y,,h(W xi))+ AQ(w)

weRP n

-~

Data fitting term R(h) Regularizer
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Losses

Regression (y S R) 31 \ : th /
Square loss 7
_ 1 _\ |
loss(y, 7) = 5(y = 7) e
loss(0, y)
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Losses

Regression (y € R) ) \ — an /
Square loss
_ 1 _\2 N
IOSS()/,Y):Q(}/—Y) R
loss(0, y)

Classification (y € {—1,1})

Logistic loss 21: ; : e
loss(y,y) = log(1 + exp(—yy)) 0:5— : g
Hinge loss c i :
loss(1, y)

loss(y, y) = max{0,1 — yy}
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Convexity in supervised machine learning

Convex loss o linear predictor = convex objective to minimize

Algorithms

e gradient descent
e stochastic gradient descent (finite sum, infinite sums)

e acceleration, variance reduction

6/45



Convexity in supervised machine learning

Convex loss o linear predictor = convex objective to minimize

Algorithms

e gradient descent
e stochastic gradient descent (finite sum, infinite sums)

e acceleration, variance reduction
Theory

e global optimization with guaranteed complexity
e matching upper and lower bounds

e useful “black-box” theory
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Non-convexity

Convex loss o non-linear predictor ~ a new world

e local minima
e saddle points

e plateaux
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Convex loss o non-linear predictor ~ a new world

e local minima
e saddle points

e plateaux

Theory:

e in general, difficult problems (high dimensional exploration)
e some guarantees to escape stationary points
e need to look at the fine structure of the model

e implicit bias: optimization and statistics intertwinned
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Why should we bother with non-linear models?

Empirical arguments
Optimized features beat fixed, random or hand-designed features

Model Orig. Accuracy
pnasnet_large_tf 82.9 [82.5, 83.2]
nasnetalarge 82.5 [82.2, 82.8]
resnet152

inception_v3_tf

densenet161

vgg19_bn

alexnet 56.5 [56.1, 57.0]
fv_64k 35.1 [34.7, 35.5]

Test accuracy for ImageNet classification (Recht et al. 2019)

8/45



Why should we bother with non-linear models?

Empirical arguments
Optimized features beat fixed, random or hand-designed features

Model Orig. Accuracy

pnasnet_large_tf 82.9 [82.5, 83.2]
nasnetalarge 82.5 [82.2, 82.8
resnet152
inception_v3_tf
densenet161
vgg19_bn
alexnet

fv_64k 35.1 [34.7, 35.5]

Test accuracy for ImageNet classification (Recht et al. 2019)

Theoretical arguments
Breaking the curse of dimensionality: from feature selection to

feature construction

[Refs]:
Recht, Roelofs, Schmidt, Shankar (2019). Do ImageNet Classifiers Generalize to ImageNet?
Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.
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Challenges for Theory

Need for new theoretical approaches

e optimization: non-convex (interactions, compositions)

e statistics: over-parameterized, implicit regularization
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Challenges for Theory

Need for new theoretical approaches

e optimization: non-convex (interactions, compositions)

e statistics: over-parameterized, implicit regularization

How could theory be useful?
o effects of hyper-parameters

e insights on individual tools in a pipeline

e more robust, more efficient, more accessible models
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Today’s program

Note for the audience
e between literature survey, lecture and research talk

e we focus on broad ideas, mathematical details are in references

e rapidly evolving field, not mature yet very large
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Today’s program

Note for the audience
e between literature survey, lecture and research talk

e we focus on broad ideas, mathematical details are in references

e rapidly evolving field, not mature yet very large

Content
e neural nets, backpropagation, initialization

e large width asymptotic (static and dynamic)
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Fully connected neural networks: basics
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Neural Networks

X1 — O\
) O—v

\5./
X2 —

Input layer Hidden layer Hidden layer Output layer
=0 (=1 =2 (=3

Fully connected architecture:

h(w,x) = Wo(WEDo( oW x + b0 ) 4 pE-1)) 4 pb)

e activation o : R — R acts entry-wise

e parameters w = (WM, pM) ... (WD) b)),
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Activation functions

Universal approximation theorem
A 2-layer NN with continuous activation function o can locally
approximate any continuous function to any degree of accuracy if

and only if o is non-polynomial.

[Refs]:
Leshno, Lin, Pinkus, Schoken (1993). Multilayer Feedforward Networks With a Nonpolynomial Activation Function
Can Approximate Any Function

13/45



Activation functions

Universal approximation theorem

A 2-layer NN with continuous activation function ¢ can locally
approximate any continuous function to any degree of accuracy if
and only if o is non-polynomial.

Common choices: R
e sigmoid o(u) = (1 + exp(—u))~! 101
e RelLU o(u) = max{u,0} = (uv)+ °]
[Refs]:

Leshno, Lin, Pinkus, Schoken (1993). Multilayer Feedforward Networks With a Nonpolynomial Activation Function

Can Approximate Any Function
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Notation (without bias)

Matrices W) € RMe-1xme for 0 < ¢ < L

0 = KOO D) = 5(,0) ¢ R™

my_—1

Y9 = 3 WOD ¢ gme

j=1

where hg(wz,ngl) =o( nggfl), except AL = Wb x(L=1),
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Backpropagation

Paradigm: Stochastic Gradient Descent with step-size 7 > 0
w(k) = w(k —1) = nVy[loss(h(w(k — 1), x(k)), y(k))]

Compute the gradient at a sample (x, y) with backpropagation
[blackboard]
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Backpropagation

Paradigm: Stochastic Gradient Descent with step-size 7 > 0

w(k) = w(k — 1) = nVu[loss(h(w(k — 1), x(k)), y(k))]

Compute the gradient at a sample (x, y) with backpropagation
[blackboard] Define 6x(5) = Vyloss(y, h(w, x)) and

my
Z y/ VV,f(SX,E
5W£—Xfl o'(yf) - ox

~ for general computational graphs: automatic differentiation
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Initialization

Non convexity: initialization matters.

Pitfalls:

e saddle pointat 0 if L > 2
e signal exploding/vanishing with depth
e gradient exploding/vanishing with depth

[blackboard]
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Initialization

Non convexity: initialization matters.

Pitfalls:

e saddle pointat 0 if L > 2
e signal exploding/vanishing with depth
e gradient exploding/vanishing with depth

[blackboard]

Solution:

Each layer WI.J(.E) i.i.d with mean 0 and variance 272 /n,_; (for deep
ReLU NNs)

[To go deeper]:
Hanin (2018). Which neural net architectures give rise to exploding and vanishing gradients?
Hanin, Rolnick (2018). How to Start Training: The Effect of Initialization and Architecture
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Infinitely wide static: Gaussian process
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Gaussian process

Definition (Gaussian process)

A random function f(x) is a Gaussian process if and only if for

every finite set of points x1, X2, ..., x, the random vector

(f(x1), f(x2),- .., f(xn))

is a multivariate Gaussian random variable. It is characterized by
its mean p(x) = E[f(x)] and covariance X(x, x") = E[f(x)f(X)].

o
@

covariance, k(r)
=
>
output, f(x)

o
=

o
NS

0 1 2 3 -5 0 5
input distance, r input, x

Radial covariances £(x, x") = k(|x' — x|) and samples of GP(0, K) (Rasmussen
and Williams, 2006) 18/45



Comments

[blackboard]

e for training, this randomness is not useful
e however, can be used as random features
e covariance depends on the architecture

e applications to Bayesian inference

> 7 7 e ' " Realization for a relu NN (L = 10), (Lee et al.
2018)

[To go deeper]:

Neal (1994). Priors for infinite networks.

Lee, Bahri, Novak, Schoenholz, Pennington, Sohl-Dickstein (2018). Deep neural networks as Gaussian processes 19/45
Matthews, Hron, Rowland, Turner, Ghahramani (2018). Gaussian Process Behaviour in Wide Deep Neural

Networks



Infinitely wide dynamic I: Lazy Training
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Gradient flow

Objective: F(w) = R(h(w)) = 1 37, loss(yk, h(w, xk))-

~ gradient flow convenient to get qualitative insights

SGD: take iid samples (x, yx) and define

w(k+1) = w(k) —nVy(loss(yk, h(w(k), xk)))

Gradient flow: small 7 and infinite samples

[imit

d N
EW(t) = —Vu[R(h(w(t)))]

= —Dhy y VR(h(w(t)))
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Dynamics of training

Let h(w) be a differentiable model and wy an initialization.

Wo

Ry

X3
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Dynamics of training

Let h(w) be a differentiable model and wy an initialization.

Wo

d
dt

X3

w — h(w)

/\ é}
o)

h(Ws)

© (w(t)) = Dhy S w(t) = ~HV R(h(w(2)))

Definition (Tangent kernel)

Ke(x,x") = (Vh(w(t),x), Vh(w(t),x")) and H: = [Ke(xi, xj)]ij-

22/45



Large Neural Networks

Vanilla NN with W,(j) A N (0,72 /my_1) without biases.

Model at initialization
As widths of layers diverge, h(wg) ~ GP(0, X%) where

T x, X) = 75 - Bpegpiopt)lo(2(x)) - o (2°(X))].
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Large Neural Networks

Vanilla NN with W,(j) A N (0,72 /my_1) without biases.

Model at initialization
As widths of layers diverge, h(wg) ~ GP(0, X%) where

T x, X) = 75 - Bpegpiopt)lo(2(x)) - o (2°(X))].

Limit tangent kernel

In the same limit, (V,, h(wp, x), Viwh(wo, x")) = Ko oo(x, x") where

L L
Ko.0o(x,x") = Z <Z(z_1)(x, x") H ¥ ()(x, x'))

(=1 =

and £ (x, X') = Eegp(o 0 [6(2(x)) - 6(2(x))].

[Refs]:
Arora, Do, Hu, Li (2019). On Exact Computation with an Infinitely Wide Neural Network.
Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks. 23/45



Infinitely wide dynamics

Theorem (Jacot et al. 2018, reformulated)

Assume that o has a Lipschitz derivative and consider the gradient
flow for the population loss. Then, for all T > 0, as the width of
all layers grow unbounded, one has uniformly on [0, T| and on
compacts of the input space,

(Vwh(we, x), Vih(we, x')) — Ko 00 (X, x').

For the square loss R(h) = ||h — h*||?, this gives in this limit,
d

aht — _HO,OO(ht - h*)

e not mentioned: some subtlety with layer-wise learning rate
e can be extended to cover ReLU activation

[Ref]:
Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks 24/45
Arora, Do, Hu, Li (2019). On Exact Computation with an Infinitely Wide Neural Net



A word on quadratic gradient flow

e with our categorization: linear method (features not learnt)
e consider a p.s.d matrix H € R” x R”, and the gradient flow,
with h(0) € R",
d
—h(t) = —H(h(t) — h*
% h() = —H(h(t) ~ )
has a closed form [blackboard)|

e convergence to an interpolating function if H has full rank

Predictor learnt by a ReLU NN [Jacot et al. 2018] 25/45



Tangent Model

Let h(w, x) be a differentiable model and wgp an initialization.

Wo

Ry

X3
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Tangent Model

Let h(w, x) be a differentiable model and wgp an initialization.

Wo

Tangent model
h(w, x) = h(wo, x) + (w — wp) - V., h(wo, x)
Scaling the output by o makes the linearization more accurate.

26/45



Lazy Training Theorem

Theorem (Lazy training through rescaling)

Assume that h(wp,-) = O(1/«) and that the loss is quadratic. In
the limit of a large scale «, the gradient flow of the non-linear
model ah and on the tangent model h learn the same model, up to
a O(1/«a) remainder.

instance of implicit bias: lazy because parameters hardly move

in optimization: whenever R(h(w)) behaves like R(h(w))
linear models are better understood (training, generalization)

recovers kernel ridgeless regression with offset f(wp, -) and

K(x,x') = (Viwh(wo, x), Vwh(wo, X))

[Refs]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

Du, Lee, Li, Wang, Zhai (2018). Gradient Descent Finds Global Minima of Deep Neural Networks.

Allen-Zhu, Li, Liang (2018). Learning and Generalization in Overparameterized Neural Networks |[...].

Chizat, Bach (2018). A Note on Lazy Training in Supervised Differentiable Programming. 27/45



When does lazy training occurs?

Relative scale criterion

For the square loss 3y — y*|*:

<1

kp(wp) == |h(wo) — h*|| [[V2h(wo, )|
[Vh(wo. ]I TV h(wo, )

Examples
e Homogeneous models with h(wy,-) = 0.
If for A > 0, h(Aw, x) = ALh(w, x), then kp(wo) =< 1/ | wol/t
o Wide two-layer NNs with iid weights, E®(w;,-) = 0.
If h(w, x) = a(m) Y7, &(w;,x), then ku(wo) < (ma(m))~!
o Deep NNSs with large layers.
Similar principle at play.
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Numerical lllustrations (1)

----- circle of radius 1
—— gradient flow (+)
—— gradient flow (-)

(a) Non-lazy (b) Lazy

Figure 1: Training trajectories of a 2-layers ReLU NN in the
teacher-student setting. Gradient descent on a finite data set.
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Numerical experiment (1)

401 end of training {74 not yet converged

3.5 === best throughout training

w

3.0

2.5

oss

= 2.0

Te

1.5

1.0

Population loss at convergence
~

0.5

0.0

(a) Over-parameterized (GD) (b) Under-parameterized (SGD)

Training a 2-layers ReLU NN in the teacher-student setting generalization
in 100-d vs init. scale 7. (a) finite data set, gradient descent (b) pure
SGD (directly minimizes the population loss).
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Numerical experiment (1)

____________ 0
100 e 10 — CIFARLO
/ - Random
90 / 10!
/
/ .
80 . ++ train accuracy S T,
N \/ —— test accuracy % o
70 7 == stability of activations
/ 1073
1
60 ,
h 104

10! 10° 10° 107
a (scale of the model)

(a) Accuracy vs scale (b) Spectrum of the tangent kernel

Training a (VGG) convolutional neural network on the CIFAR data set.
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Lessons to be drawn

For practice

e very wide networks may lead to kernel (linear) methods

e non-linear training seems essential for state of the art NN

For theory
e in depth and quantitative analysis sometimes possible

e not just one theory for NNs training

32/45



Infinitely wide nets Il: non-linear asymptotic for two layers

33/45



Two Layers NNs

O—

Input layer Hidden layer Output layer
With activation o, define ¢(w;, x) = (2) (Z Xj + b,-) and

1 m
h(w,x) = — > o(wi, x
i=1

Hard problem: existence of spurious minima even with slight

over-parameterization and good initialization

[Refs]:
Livni, Shalev-Shwartz, Shamir (2014). On the Computational Efficiency of Training Neural Networks. 34/45
Safran, Shamir (2018). Spurious Local Minima are Common in Two-layer ReLU Neural Networks.



Mean-Field Analysis

Many-particle limit
Training dynamics in the small step-size and infinite width limit:

m

1
b = T 0 ) 5
1=

[Refs]:

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Chizat, Bach (2018) On the Global Convergence of Gradient Descent for Over-parameterized Models |[...] 35/45



Global Convergence

Theorem (Global convergence, informal)

In the limit of a large hidden layer, the gradient flow of a 2-layer
NN initialized with “sufficient diversity” converges to a global
minimizer.

e diversity at initialization is key for success of training
e highly non-linear dynamics and regularization allowed

e for the population loss, this means: lowest test loss over all
2-layer NNs

[Refs]:
Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].
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Numerical lllustrations

107! 1071 4
107 — particle gradient flow 1021
—— convex minimization

-3
10 below optim. error

10 i

(a) ReLU (b) Sigmoid

Population loss at convergence vs m for training a 2-layers NN in the
teacher-student setting in 100-d.

- . e - 37/45
This is a general principle for convex optimization on measures. /



Wasserstein Gradient Flow

e parameterize the model with a probability measure pu:

hlosx) = [ 6w )d(w), s € PR
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Wasserstein Gradient Flow

e parameterize the model with a probability measure pu:

hlosx) = [ 6w )d(w), s € PR

e consider the population loss over P(R):

(1) = ROB(1) = By Jloss [ o)ty ).

~» convex in linear geometry but non-convex in Wasserstein
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Wasserstein Gradient Flow

e parameterize the model with a probability measure pu:

hlosx) = [ 6w )d(w), s € PR

e consider the population loss over P(R):

(1) = ROB(1) = By Jloss [ o)ty ).

~» convex in linear geometry but non-convex in Wasserstein
e define the Wasserstein gradient flow :
d
aﬂt
where v¢(w) = =V F'(1;) is the Wasserstein gradient of F.

Mo € P(Rd), = —diV(/.Lj_—Vt)

[Refs]:
Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks
Ambrosio, Gigli, Savaré (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures.
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2 2
1 1
0 — 0
m—o0
-1 wa -1 -
-2 -2
00 02 04 06 08 10 00 02 04 06 08 10

Quadratic loss
When R(h) = 3|\h — h*||2 for some h* € F, interpretation as a
system of charged particles with varying charge and interaction

k((r1,61), (r2,02)) = rira(®(01), P(62)) 7.

[Refs:]
Ambrosio, Gigli, Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.
Panigrahy, Rahimi, Sachdeva, Zhang (2017). Convergence results for neural networks via electrodynamics
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Mean-Field Limit for SGD

Now consider the actual training trajectory ((xk, yx) i.i.d):

w(k) = w(k — 1) — nmV [loss(h(w(k — 1), x(k)), y(k))]

m

. 1
Nm(k) = m ;5Wi(k)
=
Theorem (Mei, Montanari, Nguyen ’18)

Under regularity assumptions, if wi(0), w2(0), ... are drawn
independently accordingly to po then with probability 1 — e=?,

1
18577 ~ el S e max {2 (24 d-+105 ")

[Refs]:
Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.
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Global Convergence (more formal)

Theorem (Homogeneous case)

Assume that pg is supported on a centered sphere or ball, that ¢ is
2-homogeneous in the weights and some regularity. If u; converges
in Wasserstein distance to i then jiso is a global minimizer of F.
In particular, if wi(0), w2(0),... are drawn accordingly to g then

lim  F(ue,m) = minF.

m,t—00

e applies to 2-layers ReLU NNs
e different statement for sigmoid NNs
[Refs]:

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models |[...].
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Remark on the scaling

Change of parameterization/initialization = change of behavior.

Mean field Lazy

model h(w, x) L5 o(wi, x) ﬁ > (i, x)
init. predictor  ||A(wo, )|  O(1/+/m) 0(1)

scale kg 0(1) O(v'm)
displacement  ||woo — wo||  O(1) O(1/y/m)

NB: the 1/m scaling cannot be used with i.i.d. initialization and
L>2.
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Generalization

Through regularization
In regression tasks, adaptivity to subspace when minimizing

min —

LeP(RY) n ¢ W, Xi d'UJ( )

|+ [ viuon
where ¢ is ReLU activation and V' a ¢;-type regularizer.

~ explicit sample complexity bounds for regression
~> also some bounds under separability assumptions

[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks

Wei, Lee, Liu, Ma (2018). Regularization Matters: Generalization and Optimization of Neural Nets v.s. their
Induced Kernel.
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Lessons to be drawn

For practice

e over-parameterization/random init. yields global convergence

e choice of scalings is crucial

For theory

e strong generalization guaranties need neurons that move

e non-quantitative technics still leads to insights
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What | did not talk about

Focus was on gradient-based training in “realistic” settings.
Wide range of other approaches

e loss landscape analysis

e linear neural networks

e phase transition/computational barriers

e tensor decomposition

[ ]

[Refs]:

Arora, Cohen, Golowich, Hu (2018). Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Aubin, Maillard, Barbier, Krzakala, Macris, Zdeborovd (2018). The Committee Machine: Computational to
Statistical Gaps in Learning a Two-layers Neural Network

Zhang, Yu, Wang, Gu (2018). Learning One-hidden-layer ReLU Networks via Gradient Descent.
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several regimes, several theories

calls for new tools from mathematics

how deep NN optim. works is mostly open

optimization of compositional models?



