
Theoretical aspects of neural networks

optimization

Lénäıc Chizat*

July 24th 2019 - IFCAM summer school IISc - Bangalore

∗CNRS and Université Paris-Sud

Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers

1/45

Parametric supervised machine learning

• given training data (xi , yi) ∈ Rd × R, i ∈ {1, . . . , n}
• build a function h such that h(x) ≈ y for unseen data (x , y)

• prediction of the form h(w , x) ∈ R with parameters w ∈ Rp

Examples

• computer vision

• advertisement

• audio processing, natural language processing, medical

imaging ...

2/45

Models

What are the types of models?

Linear (in the largest sense)

Linear regression, ad-hoc features, random features, kernel methods

h(w , x) = w · φ(x)

 most of statistics and optimization theory

Non-linear

h(w , x) given by a differentiable program, such as a computational

graph (including neural networks)

 when last operation is linear: interpretation as learnt features

3/45

Models

What are the types of models?

Linear (in the largest sense)

Linear regression, ad-hoc features, random features, kernel methods

h(w , x) = w · φ(x)

 most of statistics and optimization theory

Non-linear

h(w , x) given by a differentiable program, such as a computational

graph (including neural networks)

 when last operation is linear: interpretation as learnt features

3/45

Parametric supervised machine learning

• given training data (xi , yi) ∈ Rd × R, i ∈ {1, . . . , n}
• build a function h such that h(x) ≈ y for unseen data (x , y)

• prediction of the form h(w , x) ∈ R with parameters w ∈ Rp

The goal is to predict well, i.e. minimizing the population loss:

min
w∈Rp

R(h(w)) := E(x ,y)loss(y , f (w , x))

Empirical risk minimization

min
w∈Rp

1

n

n∑
i=1

loss(yi , h(w , xi))︸ ︷︷ ︸
Data fitting term R̂(h)

+ λΩ(w)︸ ︷︷ ︸
Regularizer

4/45

Parametric supervised machine learning

• given training data (xi , yi) ∈ Rd × R, i ∈ {1, . . . , n}
• build a function h such that h(x) ≈ y for unseen data (x , y)

• prediction of the form h(w , x) ∈ R with parameters w ∈ Rp

The goal is to predict well, i.e. minimizing the population loss:

min
w∈Rp

R(h(w)) := E(x ,y)loss(y , f (w , x))

Empirical risk minimization

min
w∈Rp

1

n

n∑
i=1

loss(yi , h(w , xi))︸ ︷︷ ︸
Data fitting term R̂(h)

+ λΩ(w)︸ ︷︷ ︸
Regularizer

4/45

Losses

Regression (y ∈ R)

Square loss

loss(y , ȳ) =
1

2
(y − ȳ)2

loss(0, y)

Classification (y ∈ {−1, 1})
Logistic loss

loss(y , ȳ) = log(1 + exp(−y ȳ))

Hinge loss

loss(y , ȳ) = max{0, 1− y ȳ}
loss(1, y)

5/45

Losses

Regression (y ∈ R)

Square loss

loss(y , ȳ) =
1

2
(y − ȳ)2

loss(0, y)

Classification (y ∈ {−1, 1})
Logistic loss

loss(y , ȳ) = log(1 + exp(−y ȳ))

Hinge loss

loss(y , ȳ) = max{0, 1− y ȳ}
loss(1, y)

5/45

Convexity in supervised machine learning

Convex loss ◦ linear predictor = convex objective to minimize

Algorithms

• gradient descent

• stochastic gradient descent (finite sum, infinite sums)

• acceleration, variance reduction

Theory

• global optimization with guaranteed complexity

• matching upper and lower bounds

• useful “black-box” theory

6/45

Convexity in supervised machine learning

Convex loss ◦ linear predictor = convex objective to minimize

Algorithms

• gradient descent

• stochastic gradient descent (finite sum, infinite sums)

• acceleration, variance reduction

Theory

• global optimization with guaranteed complexity

• matching upper and lower bounds

• useful “black-box” theory

6/45

Non-convexity

Convex loss ◦ non-linear predictor a new world

• local minima

• saddle points

• plateaux

Theory:

• in general, difficult problems (high dimensional exploration)

• some guarantees to escape stationary points

• need to look at the fine structure of the model

• implicit bias: optimization and statistics intertwinned

7/45

Non-convexity

Convex loss ◦ non-linear predictor a new world

• local minima

• saddle points

• plateaux

Theory:

• in general, difficult problems (high dimensional exploration)

• some guarantees to escape stationary points

• need to look at the fine structure of the model

• implicit bias: optimization and statistics intertwinned

7/45

Why should we bother with non-linear models?

Empirical arguments

Optimized features beat fixed, random or hand-designed features

Test accuracy for ImageNet classification (Recht et al. 2019)

Theoretical arguments

Breaking the curse of dimensionality: from feature selection to

feature construction

[Refs]:

Recht, Roelofs, Schmidt, Shankar (2019). Do ImageNet Classifiers Generalize to ImageNet?

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

8/45

Why should we bother with non-linear models?

Empirical arguments

Optimized features beat fixed, random or hand-designed features

Test accuracy for ImageNet classification (Recht et al. 2019)

Theoretical arguments

Breaking the curse of dimensionality: from feature selection to

feature construction

[Refs]:

Recht, Roelofs, Schmidt, Shankar (2019). Do ImageNet Classifiers Generalize to ImageNet?

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

8/45

Challenges for Theory

Need for new theoretical approaches

• optimization: non-convex (interactions, compositions)

• statistics: over-parameterized, implicit regularization

How could theory be useful?

• effects of hyper-parameters

• insights on individual tools in a pipeline

• more robust, more efficient, more accessible models

9/45

Challenges for Theory

Need for new theoretical approaches

• optimization: non-convex (interactions, compositions)

• statistics: over-parameterized, implicit regularization

How could theory be useful?

• effects of hyper-parameters

• insights on individual tools in a pipeline

• more robust, more efficient, more accessible models

9/45

Today’s program

Note for the audience

• between literature survey, lecture and research talk

• we focus on broad ideas, mathematical details are in references

• rapidly evolving field, not mature yet very large

Content

• neural nets, backpropagation, initialization

• large width asymptotic (static and dynamic)

10/45

Today’s program

Note for the audience

• between literature survey, lecture and research talk

• we focus on broad ideas, mathematical details are in references

• rapidly evolving field, not mature yet very large

Content

• neural nets, backpropagation, initialization

• large width asymptotic (static and dynamic)

10/45

Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers

11/45

Neural Networks

x1

x2

y

Hidden layer

` = 1

Hidden layer

` = 2

Input layer

` = 0

Output layer

` = 3

Fully connected architecture:

h(w , x) = WLσ(W (L−1)σ(. . . σ(W (1)x + b(1) . . .) + b(L−1)) + b(L)

• activation σ : R→ R acts entry-wise

• parameters w = ((W (1), b(1)), . . . , (W (L), b(L)).
12/45

Activation functions

Universal approximation theorem

A 2-layer NN with continuous activation function σ can locally

approximate any continuous function to any degree of accuracy if

and only if σ is non-polynomial.

[Refs]:

Leshno, Lin, Pinkus, Schoken (1993). Multilayer Feedforward Networks With a Nonpolynomial Activation Function

Can Approximate Any Function.

13/45

Activation functions

Universal approximation theorem

A 2-layer NN with continuous activation function σ can locally

approximate any continuous function to any degree of accuracy if

and only if σ is non-polynomial.

Common choices:

• sigmoid σ(u) = (1 + exp(−u))−1

• ReLU σ(u) = max{u, 0} = (u)+

[Refs]:

Leshno, Lin, Pinkus, Schoken (1993). Multilayer Feedforward Networks With a Nonpolynomial Activation Function

Can Approximate Any Function.

13/45

Notation (without bias)

x = x0 y1 x1 y2 x2 y3 = y

W 1 W 2 W 3

Matrices W (`) ∈ Rm`−1×m` for 0 ≤ ` ≤ L
x (`) = h(`)(w (`), x (`−1)) = σ(y (`)) ∈ Rm`

y
(`)
i =

m`−1∑
j=1

W
(`)
ij x

(`−1)
j ∈ Rm`

where h`(w `, x`−1) = σ(W `x`−1), except h(L) = W (L)x (L−1).

14/45

Backpropagation

Paradigm: Stochastic Gradient Descent with step-size η > 0

w(k) = w(k − 1)− η∇w [loss(h(w(k − 1), x(k)), y(k))]

Compute the gradient at a sample (x , y) with backpropagation

[blackboard]

Define δx (L) = ∇2loss(y , h(w , x)) and
δx`−1

j =

m∑̀
i=1

σ′(y `i) ·W `
ij · δx`i

δW `
ij = x`−1

j · σ′(y `i) · δx`i

 for general computational graphs: automatic differentiation

15/45

Backpropagation

Paradigm: Stochastic Gradient Descent with step-size η > 0

w(k) = w(k − 1)− η∇w [loss(h(w(k − 1), x(k)), y(k))]

Compute the gradient at a sample (x , y) with backpropagation

[blackboard] Define δx (L) = ∇2loss(y , h(w , x)) and
δx`−1

j =

m∑̀
i=1

σ′(y `i) ·W `
ij · δx`i

δW `
ij = x`−1

j · σ′(y `i) · δx`i

 for general computational graphs: automatic differentiation

15/45

Initialization

Non convexity: initialization matters.

Pitfalls:

• saddle point at 0 if L ≥ 2

• signal exploding/vanishing with depth

• gradient exploding/vanishing with depth

[blackboard]

Solution:

Each layer W
(`)
ij i.i.d with mean 0 and variance 2τ2

w/n`−1 (for deep

ReLU NNs)
[To go deeper]:

Hanin (2018). Which neural net architectures give rise to exploding and vanishing gradients?

Hanin, Rolnick (2018). How to Start Training: The Effect of Initialization and Architecture

16/45

Initialization

Non convexity: initialization matters.

Pitfalls:

• saddle point at 0 if L ≥ 2

• signal exploding/vanishing with depth

• gradient exploding/vanishing with depth

[blackboard]

Solution:

Each layer W
(`)
ij i.i.d with mean 0 and variance 2τ2

w/n`−1 (for deep

ReLU NNs)
[To go deeper]:

Hanin (2018). Which neural net architectures give rise to exploding and vanishing gradients?

Hanin, Rolnick (2018). How to Start Training: The Effect of Initialization and Architecture

16/45

Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers

17/45

Gaussian process

Definition (Gaussian process)

A random function f (x) is a Gaussian process if and only if for

every finite set of points x1, x2, . . . , xn the random vector

(f (x1), f (x2), . . . , f (xn))

is a multivariate Gaussian random variable. It is characterized by

its mean µ(x) = E[f (x)] and covariance Σ(x , x ′) = E[f (x)f (x̄)].

Radial covariances Σ(x , x ′) = k(|x ′ − x |) and samples of GP(0,K) (Rasmussen

and Williams, 2006)

[blackboard]

18/45

Comments

[blackboard]

• for training, this randomness is not useful

• however, can be used as random features

• covariance depends on the architecture

• applications to Bayesian inference

Realization for a relu NN (L = 10), (Lee et al.

2018)

[To go deeper]:

Neal (1994). Priors for infinite networks.

Lee, Bahri, Novak, Schoenholz, Pennington, Sohl-Dickstein (2018). Deep neural networks as Gaussian processes.

Matthews, Hron, Rowland, Turner, Ghahramani (2018). Gaussian Process Behaviour in Wide Deep Neural

Networks

19/45

Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers

20/45

Gradient flow

Objective: F (w) = R̂(h(w)) = 1
n

∑n
k=1 loss(yk , h(w , xk)).

SGD: take iid samples (xk , yk) and define

w(k + 1) = w(k)−η∇w (loss(yk , h(w(k), xk)))

Gradient flow: small η and infinite samples

limit

d

dt
w(t) = −∇w [R̂(h(w(t)))]

= −DhTw(t)∇R̂(h(w(t)))

 gradient flow convenient to get qualitative insights

21/45

Dynamics of training

Let h(w) be a differentiable model and w0 an initialization.

×

•

w0

W0

h(W0)

×
h(w0)

w 7→ h(w)

×h
∗

•

d

dt
h(w(t)) = DhTw(t)

d

dt
w(t) = −Ht∇R̂(h(w(t)))

Definition (Tangent kernel)

Kt(x , x
′) = 〈∇h(w(t), x),∇h(w(t), x ′)〉 and Ht = [Kt(xi , xj)]i ,j .

22/45

Dynamics of training

Let h(w) be a differentiable model and w0 an initialization.

×

•

w0

W0

h(W0)

×
h(w0)

w 7→ h(w)

×h
∗

•

d

dt
h(w(t)) = DhTw(t)

d

dt
w(t) = −Ht∇R̂(h(w(t)))

Definition (Tangent kernel)

Kt(x , x
′) = 〈∇h(w(t), x),∇h(w(t), x ′)〉 and Ht = [Kt(xi , xj)]i ,j .

22/45

Large Neural Networks

Vanilla NN with W
(`)
i ,j

i.i.d∼ N (0, τ2
w/m`−1) without biases.

Model at initialization

As widths of layers diverge, h(w0) ∼ GP(0,ΣL) where

Σ`+1(x , x ′) = τ2
w · Ez`∼GP(0,Σ`)[σ(z`(x)) · σ(z`(x ′))].

Limit tangent kernel

In the same limit, 〈∇wh(w0, x),∇wh(w0, x
′)〉 → K0,∞(x , x ′) where

K0,∞(x , x ′) =
L∑
`=1

(
Σ(`−1)(x , x ′)

L∏
`′=`

Σ̇(`′)(x , x ′)

)

and Σ̇`+1(x , x ′) = Ez`∼GP(0,Σ`)[σ̇(z`(x)) · σ̇(z`(x ′))].

[Refs]:

Arora, Do, Hu, Li (2019). On Exact Computation with an Infinitely Wide Neural Network.

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

23/45

Large Neural Networks

Vanilla NN with W
(`)
i ,j

i.i.d∼ N (0, τ2
w/m`−1) without biases.

Model at initialization

As widths of layers diverge, h(w0) ∼ GP(0,ΣL) where

Σ`+1(x , x ′) = τ2
w · Ez`∼GP(0,Σ`)[σ(z`(x)) · σ(z`(x ′))].

Limit tangent kernel

In the same limit, 〈∇wh(w0, x),∇wh(w0, x
′)〉 → K0,∞(x , x ′) where

K0,∞(x , x ′) =
L∑
`=1

(
Σ(`−1)(x , x ′)

L∏
`′=`

Σ̇(`′)(x , x ′)

)

and Σ̇`+1(x , x ′) = Ez`∼GP(0,Σ`)[σ̇(z`(x)) · σ̇(z`(x ′))].

[Refs]:

Arora, Do, Hu, Li (2019). On Exact Computation with an Infinitely Wide Neural Network.

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks. 23/45

Infinitely wide dynamics

Theorem (Jacot et al. 2018, reformulated)

Assume that σ has a Lipschitz derivative and consider the gradient

flow for the population loss. Then, for all T > 0, as the width of

all layers grow unbounded, one has uniformly on [0,T] and on

compacts of the input space,

〈∇wh(wt , x),∇wh(wt , x
′)〉 → K0,∞(x , x ′).

For the square loss R(h) = 1
2‖h − h?‖2, this gives in this limit,

d

dt
ht = −H0,∞(ht − h?)

• not mentioned: some subtlety with layer-wise learning rate

• can be extended to cover ReLU activation

[Ref]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks

Arora, Do, Hu, Li (2019). On Exact Computation with an Infinitely Wide Neural Net
24/45

A word on quadratic gradient flow

• with our categorization: linear method (features not learnt)

• consider a p.s.d matrix H ∈ Rn × Rn, and the gradient flow,

with h(0) ∈ Rn,

d

dt
h(t) = −H(h(t)− h?)

has a closed form [blackboard]

• convergence to an interpolating function if H has full rank

Predictor learnt by a ReLU NN [Jacot et al. 2018]
25/45

Tangent Model

Let h(w , x) be a differentiable model and w0 an initialization.

×

•

w0

W0

h(W0)

×
h(w0)

w 7→ h(w)

×h
∗

•

×

•
•

w0

W0

h(W0, ·)

×
h(w0)

w 7→ h̄(w)

h̄(w0)

×h
∗

•
•

Tangent model

h̄(w , x) = h(w0, x) + (w − w0) · ∇wh(w0, x)

Scaling the output by α makes the linearization more accurate.

26/45

Tangent Model

Let h(w , x) be a differentiable model and w0 an initialization.

×

•
•

w0

W0

h(W0, ·)

×
h(w0)

w 7→ h̄(w)

h̄(w0)

×h
∗

•
•

Tangent model

h̄(w , x) = h(w0, x) + (w − w0) · ∇wh(w0, x)

Scaling the output by α makes the linearization more accurate.

26/45

Lazy Training Theorem

Theorem (Lazy training through rescaling)

Assume that h(w0, ·) = O(1/α) and that the loss is quadratic. In

the limit of a large scale α, the gradient flow of the non-linear

model αh and on the tangent model h̄ learn the same model, up to

a O(1/α) remainder.

• instance of implicit bias: lazy because parameters hardly move

• in optimization: whenever R(h(w)) behaves like R(h̄(w))

• linear models are better understood (training, generalization)

• recovers kernel ridgeless regression with offset f (w0, ·) and

K (x , x ′) = 〈∇wh(w0, x),∇wh(w0, x
′)〉

[Refs]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

Du, Lee, Li, Wang, Zhai (2018). Gradient Descent Finds Global Minima of Deep Neural Networks.

Allen-Zhu, Li, Liang (2018). Learning and Generalization in Overparameterized Neural Networks [...].

Chizat, Bach (2018). A Note on Lazy Training in Supervised Differentiable Programming. 27/45

When does lazy training occurs?

Relative scale criterion

For the square loss 1
2‖y − y?‖2:

κh(w0) :=
‖h(w0)− h?‖
‖∇h(w0, ·)‖

‖∇2h(w0, ·)‖
‖∇h(w0, ·)‖

� 1

Examples

• Homogeneous models with h(w0, ·) = 0.

If for λ > 0, h(λw , x) = λLh(w , x), then κh(w0) � 1/‖w0‖L

• Wide two-layer NNs with iid weights, EΦ(wi , ·) = 0.

If h(w , x) = α(m)
∑m

i=1 Φ(wi , x), then κh(w0) � (mα(m))−1

• Deep NNs with large layers.

Similar principle at play.

28/45

Numerical Illustrations (I)

(a) Non-lazy

circle of radius 1
gradient flow (+)
gradient flow (-)

(b) Lazy

Figure 1: Training trajectories of a 2-layers ReLU NN in the

teacher-student setting. Gradient descent on a finite data set.

29/45

Numerical experiment (I)

10 2 10 1 100 101

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Te

st
 lo

ss
end of training
best throughout training

(a) Over-parameterized (GD)

10 2 10 1 100 101
0

1

2

3

Po
pu

la
tio

n
lo

ss
 a

t c
on

ve
rg

en
ce

not yet converged

(b) Under-parameterized (SGD)

Training a 2-layers ReLU NN in the teacher-student setting generalization

in 100-d vs init. scale τ . (a) finite data set, gradient descent (b) pure

SGD (directly minimizes the population loss).

30/45

Numerical experiment (II)

101 103 105 107

 (scale of the model)

60

70

80

90

100

%

train accuracy
test accuracy
stability of activations

(a) Accuracy vs scale

100 101 102 103

i

10 4

10 3

10 2

10 1

100

2 i

CIFAR10
Random

(b) Spectrum of the tangent kernel

Training a (VGG) convolutional neural network on the CIFAR data set.

31/45

Lessons to be drawn

For practice

• very wide networks may lead to kernel (linear) methods

• non-linear training seems essential for state of the art NN

For theory

• in depth and quantitative analysis sometimes possible

• not just one theory for NNs training

32/45

Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers

33/45

Two Layers NNs

x1

x2

Hidden layerInput layer Output layer

With activation σ, define φ(wi , x) = W
(2)
i σ

(∑
W

(1)
ij xj + bi

)
and

h(w , x) =
1

m

m∑
i=1

φ(wi , x)

Hard problem: existence of spurious minima even with slight

over-parameterization and good initialization
[Refs]:

Livni, Shalev-Shwartz, Shamir (2014). On the Computational Efficiency of Training Neural Networks.

Safran, Shamir (2018). Spurious Local Minima are Common in Two-layer ReLU Neural Networks.
34/45

Mean-Field Analysis

Many-particle limit

Training dynamics in the small step-size and infinite width limit:

µt,m =
1

m

m∑
i=1

δwi (t) →
m→∞

µt,∞

[Refs]:

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Chizat, Bach (2018) On the Global Convergence of Gradient Descent for Over-parameterized Models [...] 35/45

Global Convergence

Theorem (Global convergence, informal)

In the limit of a large hidden layer, the gradient flow of a 2-layer

NN initialized with “sufficient diversity” converges to a global

minimizer.

• diversity at initialization is key for success of training

• highly non-linear dynamics and regularization allowed

• for the population loss, this means: lowest test loss over all

2-layer NNs

[Refs]:

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].

36/45

Numerical Illustrations

101 102

10 6

10 5

10 4

10 3

10 2

10 1

100

particle gradient flow
convex minimization
below optim. error
m0

(a) ReLU

101 102
10 5

10 4

10 3

10 2

10 1

100

(b) Sigmoid

Population loss at convergence vs m for training a 2-layers NN in the

teacher-student setting in 100-d.

This is a general principle for convex optimization on measures.
37/45

Wasserstein Gradient Flow

• parameterize the model with a probability measure µ:

h(µ, x) =

∫
φ(w , x)dµ(w), µ ∈ P(Rd)

• consider the population loss over P(Rd):

F (µ) := R(h(µ)) = E(x ,y)

[
loss

(∫
φ(w , x)dµ(w), y

)]
.

 convex in linear geometry but non-convex in Wasserstein

• define the Wasserstein gradient flow :

µ0 ∈ P(Rd),
d

dt
µt = −div(µtvt)

where vt(w) = −∇F ′(µt) is the Wasserstein gradient of F .

[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

Ambrosio, Gigli, Savaré (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures.

38/45

Wasserstein Gradient Flow

• parameterize the model with a probability measure µ:

h(µ, x) =

∫
φ(w , x)dµ(w), µ ∈ P(Rd)

• consider the population loss over P(Rd):

F (µ) := R(h(µ)) = E(x ,y)

[
loss

(∫
φ(w , x)dµ(w), y

)]
.

 convex in linear geometry but non-convex in Wasserstein

• define the Wasserstein gradient flow :

µ0 ∈ P(Rd),
d

dt
µt = −div(µtvt)

where vt(w) = −∇F ′(µt) is the Wasserstein gradient of F .

[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

Ambrosio, Gigli, Savaré (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures.

38/45

Wasserstein Gradient Flow

• parameterize the model with a probability measure µ:

h(µ, x) =

∫
φ(w , x)dµ(w), µ ∈ P(Rd)

• consider the population loss over P(Rd):

F (µ) := R(h(µ)) = E(x ,y)

[
loss

(∫
φ(w , x)dµ(w), y

)]
.

 convex in linear geometry but non-convex in Wasserstein

• define the Wasserstein gradient flow :

µ0 ∈ P(Rd),
d

dt
µt = −div(µtvt)

where vt(w) = −∇F ′(µt) is the Wasserstein gradient of F .

[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

Ambrosio, Gigli, Savaré (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures.

38/45

−→
m→∞

Quadratic loss

When R(h) = 1
2‖h − h∗‖2 for some h∗ ∈ F , interpretation as a

system of charged particles with varying charge and interaction

k((r1, θ1), (r2, θ2)) = r1r2〈Φ(θ1),Φ(θ2)〉F .

[Refs:]

Ambrosio, Gigli, Savaré (2008). Gradient flows in metric spaces and in the space of probability measures.

Panigrahy, Rahimi, Sachdeva, Zhang (2017). Convergence results for neural networks via electrodynamics.

39/45

Mean-Field Limit for SGD

Now consider the actual training trajectory ((xk , yk) i.i.d):
w(k) = w(k − 1)− ηm∇w [loss(h(w(k − 1), x(k)), y(k))]

µ̂m(k) =
1

m

m∑
i=1

δwi (k)

Theorem (Mei, Montanari, Nguyen ’18)

Under regularity assumptions, if w1(0),w2(0), . . . are drawn

independently accordingly to µ0 then with probability 1− e−z ,

‖µ̂(bt/ηc)
m − µt‖2

BL . eCt max

{
η,

1

m

}(
z + d + log

m

η

)
[Refs]:

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

40/45

Global Convergence (more formal)

Theorem (Homogeneous case)

Assume that µ0 is supported on a centered sphere or ball, that φ is

2-homogeneous in the weights and some regularity. If µt converges

in Wasserstein distance to µ∞ then µ∞ is a global minimizer of F .

In particular, if w1(0),w2(0), . . . are drawn accordingly to µ0 then

lim
m,t→∞

F (µt,m) = minF .

• applies to 2-layers ReLU NNs

• different statement for sigmoid NNs

[Refs]:

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].

41/45

Remark on the scaling

Change of parameterization/initialization ⇒ change of behavior.

Mean field Lazy

model h(w , x) 1
m

∑
φ(wi , x) 1√

m

∑
φ(wi , x)

init. predictor ‖h(w0, ·)‖ O(1/
√
m) O(1)

scale κ−1
0 O(1) O(

√
m)

displacement ‖w∞ − w0‖ O(1) O(1/
√
m)

NB: the 1/m scaling cannot be used with i.i.d. initialization and

L > 2.

42/45

Generalization

Through regularization

In regression tasks, adaptivity to subspace when minimizing

min
µ∈P(Rd)

1

n

n∑
i=1

∣∣∣∣∫ φ(w , xi)dµ(w)− yi

∣∣∣∣2 +

∫
V (w)dµ(w)

where φ is ReLU activation and V a `1-type regularizer.

 explicit sample complexity bounds for regression

 also some bounds under separability assumptions
[Refs]:

Bach (2017). Breaking the Curse of Dimensionality with Convex Neural Networks.

Wei, Lee, Liu, Ma (2018). Regularization Matters: Generalization and Optimization of Neural Nets v.s. their

Induced Kernel.

43/45

Lessons to be drawn

For practice

• over-parameterization/random init. yields global convergence

• choice of scalings is crucial

For theory

• strong generalization guaranties need neurons that move

• non-quantitative technics still leads to insights

44/45

What I did not talk about

Focus was on gradient-based training in “realistic” settings.

Wide range of other approaches

• loss landscape analysis

• linear neural networks

• phase transition/computational barriers

• tensor decomposition

• ...

[Refs]:

Arora, Cohen, Golowich, Hu (2018). Convergence Analysis of Gradient Descent for Deep Linear Neural Networks

Aubin, Maillard, Barbier, Krzakala, Macris, Zdeborová (2018). The Committee Machine: Computational to

Statistical Gaps in Learning a Two-layers Neural Network.

Zhang, Yu, Wang, Gu (2018). Learning One-hidden-layer ReLU Networks via Gradient Descent.

45/45

Conclusion

• several regimes, several theories

• calls for new tools from mathematics

Perspectives for research

• how deep NN optim. works is mostly open

• optimization of compositional models?

45/45

