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Optimal Transport & Entropic
Regularization



Statistical Optimal Transport

Estimation of the Squared Wasserstein Distance

Let 1 and v be probability densities on the unit ball in R?. Given

1 < 1 <
ﬁn = n'zléx,- and 7, = n;(s)ﬁ
1= =

empirical distributions of n independent samples, estimate

W)= min [ lly = xl3dr(xy)
yeN(p,v)
where (1, v) is the set of transport plans*.

*Set of probability distributions on RY x R? with respective marginals ;4 and v.

How does entropic regularization help for this task?

[Refs for other approaches]:

Forrow et al. (2019). Statistical optimal transport via factored couplings.

Hiitter, Rigollet (2019). Minimax rates of estimation for smooth optimal transport maps

Niles-Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance 1/15
Niles-Weed, Rigollet (2019). Estimation of Wasserstein distances in the spiked transport model.



Plug-in estimator

Theorem (CRLVP’20)

n—2/d ifd > 4,
E “ W22(,am ﬁn) - W22(,U7 V)” 5 n—1/2 IOg(n) ifd = 47
n~1/2 ifd < 4.

Proof idea. Bound \VT/22 — WZ| by the supremum of an empirical
process over convex 1-Lipschitz functions (Brenier). Then apply
Dudley’s chaining and Bronshtein’s bound on the covering number.

Corollary
o If Wo(u,v) > a >0, same error bounds xé for Wa(fin, 0n)

e Faster than the rate n='/9 (which is when p = v)
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Numerical illustration

Performance of the plug-in estimator W , = Wa(fin, 7)
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Entropy Regularized Optimal Transport

Let A >0 and H(p,v) = [ log (%) dy be the relative entropy.

M) = min [ lly = xlBdrixn) +23HO.u )

Optimal transport plan for A = 2.0e-05

-
-y

e a.k.a. the Schrédinger bridge
e favors diffuse solutions

e increases stability

the higher A, the easier to solve

Proposition (Dvurechensky et al., builds on Altschuler et al.,)

Sinkhorn's algo. computes T(fin, D) to e-accuracy in time O(n*A~te=1).

[Refs]:
Altschuler, Niles-Weed, Rigollet (2017). Near-linear time approximation algorithms for optimal transport [...]. 4/15
Dvurechensky, Gasnikov, Kroshnin (2018). Computational optimal transport |[...]



Discrete optimal transport via Sinkhorn

Shortcuts: Ty n = Ta(fin, On), W2, = WE(jin, Dn), WE = W (1, v).
Error decomposition (1)

E[|Ton — W2|] <E[|Ty,— W2,[] +E[JWZ, — W3]

/

Approximation error Estimation error
< Alog(n) <n=2/d (if d > 4)

o With A < n=2/9 we get O(n=2/?) accuracy (if d > 4)

e That's how regularization is analyzed in prior work

Can we use larger values of \?

[Refs]:
Niles-Weed (2018). An explicit analysis of the entropic penalty in linear programming.
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Naive unsuccessful attempt

Shortcuts: Ty = Ta(fin, Pn), Ta = Ta(u, v), WE = W (u,v).
Error decomposition (I1)

E[|Tan— W3l <E[|Tan—Tal]+ [Th— W3
—— —

Estimation error Approximation error
S(A4AT92)n=1/2 <X (1+log(1/X))

~ With A = n=1/(4+2) e get E|| 5 — W2|] < n=/(d+2) jog(n)
Drawback of Ty: poor approximation error

NB: estimation error bound potentially not tight

[Refs]:
Genevay et al. (2019). Sample Complexity of Sinkhorn Divergences
Mena, Niles-Weed (2019). Statistical bounds for entropic optimal transport [...]
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Improving the Approximation Error




Sinkhorn divergence

1 1
Sa(p,v) == Ta(p,v) — - Ta(pe, i) — ETA(V, v)

e |t is positive definite: Sy(u, ) > 0 with equality iff = v
e Interpolation properties:
lim Sx(p,v) = W22(N7 v)
A—0
lim Sy(1,v) = |Ex~u[X] = Ev~u [ Y13
A—00

e As )\ increases:
e Increasing statistical and computational efficiency
e Decreasing discriminative power

Can we quantify the trade-offs at play?

[Refs]:
Genevay, Peyré, Cuturi (2019). Learning generative models with Sinkhorn divergences.
Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2019). Interpolating between Optimal Transport and MMD. 8/15



Dynamic entropy regularized optimal transport

Let H(p) = [ log(u (x)dx and p, v with bounded densities.

Theorem (Yasue formulation of the Schrédinger problem)

Ta(p,v) + dXlog(27A) + )\(H(u) + H(v)) =
min / L, (160013 4% 19 ogt e B e ) e
Kmetlc energy Fisher information .

where (p, v) solves Orp+ V - (pv) =0, p(0,-) = p and p(1,-) = v.
Definition (Fisher info. of the W,-geodesic)

1
)= / / |V log p(t, %) |3p(t, x) dx dt
0 Rd

[Refs]:
Chen, Georgiou, Pavon (2019). On the relation between optimal transport [...] 1
Conforti, Tamanini (2019). A formula for the time derivative of the entropic cost. 9/ 5



Tight approximation bounds

Recall assumptions: p, v have bounded densities and supports.

Theorem (CRLVP’20)

2
|Sa(k v) = Wi (s, v)] < /\T max{/(p, v), (I(p) + 1(v))/2}.

If moreover the right-hand side is finite, it holds
2

A
311 v) ~ Wal, ) = - (1, ) — (1) + 101)/2) + o(¥?).
Proof idea. (1) Immediate from Yasue formula. (2) Variational
analysis arguments to get the right derivative of A> — S at 0.

e (in paper) bound /(f, V) given regularity of Brenier potential
e from Mlog(1/)\) to A2 for (almost) free!
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Richardson extrapolation

We can cancel the term in A2 for (almost) free. Let
Ra(p, v) :=25\(1, v) — S 35 (1 V).

Proposition
If u, v have bounded densities and I(u,v), (1), I(v) < oo then

[RA(1, v) = WZ (, v)| = o(N?)

e Up to constants, Ty, Sy and R have the same sample and
computational complexities but better approximation errors

e Open question: when is the remainder in O(\*) ?

[Ref]:
Bach (2020). On the effectiveness of Richardson extrapolation in machine learning
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Gaussian case

Let u = N(a, A), v = N(b, B) where a,b € R? and A, B € S ..
If a= b, W, is the Bures distance:

WE(u,v) = d}(A, B) :=tr A+ tr B — 2tr(AY2BAY/2)1/2,

Exploiting the closed-form expression for Ty(u, V), we prove:

Expansion Gaussian case

22 e At 3 oo
5>\(:“7V)7 W22(:U"V):7§d28(’4 178 1)+ﬁdzB(A 338 3)+O()‘5)

e Richardson extrapolation can boost approximation rates here
e Consistent with expansion in terms of /(ju,v), as it must.
[Refs]:

Chen, Georgiou, Pavon (2015). Optimal steering of a linear stochastic system to a final probability distribution. ]_2/]_5
Janati, Muzellec, Peyré, Cuturi (2020). Entropic Optimal Transport between Gaussian Measures |[...].



Statistical & Computational
Consequences




Sinkhorn Divergence Estimator

Shortcuts: §,\7,, = Sx(fins Dn), Sx = Sa(p, v), WE = W2(u,v).
Error decomposition (I1)

E[|§)\,n_ W22|] < E“g)\,n_s)\u + |5)\_ W22|
—— ——

N——
Estimation error Approximation error
S(A+1"9/2)p~1/2 <)\2

o With A = m/(6+4), we get E|$y,, — WR[] S n-2/(@+

e We “almost” recover the rate of the plug-in estimator
e But with a much larger A | (n=1/(4+4) instead of n=2/9

e Rate further improved w/ Richardson extrapolation Ry (fin, 7p)
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Numerical experiments (I): estimate W}

1, v elliptically contoured, smooth densities, compact supports.

10! 10? 10° 10t
number of samples

Absolute error on W3 (d = 10, A = 1).

° §,\7,, and 'L%/\,n quickly reach a good estimation
e then reach a plateau (the approximation error takes-over)

e difficult to interpret because W7 is a scalar...
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Numerical experiments (l1): estimate dual potentials

Estimate ¢, the Fréchet derivative of u+— WZ2(u,v) (d = 5).

We plot the L(p) estimation error.
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1 grror on the first potential

10' 102 10° 10! 10°
number of samples

10! 102 10° 10t
number of samples

(left) vs. n for A = 1 (middle) vs. X for n = 10* (right) vs. n for best .

Estimator 'IA}\’,, §,\7,, Ii’,\m
Time (s) | 0.25 0.08 0.12

Table 1: Time to reach 0.03-accuracy via Sinkhorn's algorithm 15/15



Refined approximation error analysis

Statistical & computational consequences
Theory consistent with practical behavior

[Paper :]
- Chizat, Roussillon, Léger, Vialard, Peyré (2020). Faster Wasserstein
Distance Estimation with the Sinkhorn Divergence.
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