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Supervised learning with neural networks

Supervised machine learning

• Consider a couple of random variables (X ,Y ) on Rd × R

• Given n i.i.d. samples (xi , yi )
n
i=1, build h such that h(X ) ≈ Y

Wide 2-layer ReLU neural networks

Class of predictors h of the form, for some large width m ∈ N,

h((wj)j , x) :=
1

m

m∑
j=1

φ(wj , x)

where φ(w , x) := c max{a>x + b, 0} and w := (a, b, c) ∈ Rd+2.

 φ is 2-homogeneous in w , i.e. φ(rw , x) = r2φ(w , x),∀r > 0

Learning algorithm: selects (wj)j using the training data
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Gradient flow of the empirical risk

Empirical risk minimization

• Choose a loss ` : R2 → R convex & smooth in its 1st variable

• “Minimize” the empirical risk with a regularization λ ≥ 0

Fm((wj)j) :=
1

n

n∑
i=1

`(h((wj)j , xi ), yi )︸ ︷︷ ︸
empirical risk

+
λ

m

m∑
j=1

‖wj‖2
2︸ ︷︷ ︸

(optional) regularization

Gradient-based learning

• Initialize w1(0), . . . ,wm(0)
i.i.d∼ µ0 ∈ P2(Rd+2)

• Decrease the non-convex objective via gradient flow, for t ≥ 0,

d

dt
(wj(t))j = −m∇Fm((wj(t))j)

 in practice, discretized with variants of gradient descent 2/20



Illustration

Dynamics for a classification task: unregularized logistic loss, d = 2

Space of parameters

• plot |c | · (a, b)

• color depends on sign of c

• tanh radial scale

Space of predictors

• (+/−) training set

• color shows h((wj(t))j , ·)
• line shows 0 level set 3/20



Motivations

Main question

What is performance of the learnt predictor h((wj(∞))j , ·) ?

• Understanding 2-layer networks: when are they powerful?

 role of initialization µ0, loss, regularization, data structure, etc.

• Understanding representation learning via back-propagation

 not captured by current theories for deeper models who study

perturbative regimes around the initialization

• Natural next theoretical step after linear models

 we can’t understand the deep if we don’t understand the shallow

• Beautiful connections with rich mathematical theories

 variation norm spaces, Wasserstein gradient flows
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Outline

Global convergence in the infinite width limit

Generalization with regularization

Implicit bias in the unregularized case

Wasserstein-Fisher-Rao gradient flows for optimization
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Global convergence in the infinite

width limit



Wasserstein gradient flow formulation

• Parameterize with a probability measure µ ∈ P2(Rd+2)

h(µ, x) =

∫
φ(w , x)dµ(w)

• Objective on the space of probability measures

F (µ) :=
1

n

n∑
i=1

`(h(µ, xi ), yi ) + λ

∫
‖w‖2

2 dµ(w)

Theorem (dynamical infinite width limit, adapted to ReLU)

Assume that

spt(µ0) ⊂ {|c |2 = ‖a‖2
2 + |b|2}.

As m→∞, µt,m = 1
m

∑m
j=1 δwj (t) converges in P2(Rd+2) to µt ,

the unique Wasserstein gradient flow of F starting from µ0.

[Refs]:

Ambrosio, Gigli, Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.
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Global convergence

Theorem (C. & Bach, ’18, adapted to ReLU)

Assume that µ0 = USd ⊗ U{−1,1}. If µt converges to µ∞ in

P2(Rd+2), then µ∞ is a global minimizer of F .

• Initialization matters: the key assumption on µ0 is diversity

• Corollary: limm,t→∞ F (µm,t) = minF

• Convergence of µt : open question (even with compactness)

Generalization bounds?

They depend on the objective F and the data. If F is the ...

• regularized empirical risk: “just” statistics (this talk)

• unregularized empirical risk: need implicit bias (this talk)

• population risk: need convergence speed (open question)

[Refs]:

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...]. 6/20



Illustration: population risk

2 1 0 1 2 3

2

1

0

1

2

Stochastic gradient descent on population risk (m = 100, d = 1)

Teacher-student setting: X ∼ USd and Y = f ∗(X ) where f ∗ is a

ReLU neural network with 5 units (dashed lines)

Square loss `(y , y ′) = (y − y ′)2.

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.
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Generalization with regularization



Variation norm

Definition (Variation norm)

For a predictor h : Rd → R, its variation norm is

‖h‖F1 := min
µ∈P2(Rd+2)

{
1

2

∫
‖w‖2

2 dµ(w) ; h(x) =

∫
φ(w , x)dµ(w)

}
= min

ν∈M(Sd )

{
‖ν‖TV ; h(x) =

∫
max{a>x + b, 0}dν(a, b)

}
Proposition

If µ∗ ∈ P2(Rd+2) minimizes F then h(µ∗, ·) minimizes

1

n

n∑
i=1

`(h(xi ), yi ) + 2λ‖h‖F1 .

[Refs]:

Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks.

Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation. 8/20



Generalization with variation norm regularization

Regression of a Lipschitz function

Assume that X is bounded and Y = f ∗(X ) where f ∗ is 1-Lipschitz.

Error bound on E
[
(h(X )− f ∗(X ))2

]
for any estimator h?

 in general � n−1/d unavoidable (curse of dimensionality)

Anisotropy assumption:

What if moreover f ∗(x) = g(πr (x)) for some rank r projection πr?

Theorem (Bach ’14, reformulated)

For a suitable choice of regularization λ(n) > 0, the minimizer of F

with `(y , y ′) = (y − y ′)2 enjoys an error bound in Õ(n−1/(r+3)).

• methods with fixed features (e.g. kernels) remain ∼ n−1/d

• no need to bound the number m of units

[Refs]:

Bach. (2014). Breaking the curse of dimensionality with convex neural networks.
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Fixing hidden layer and conjugate RKHS

What if we only train the output layer?

 Let S := {µ ∈ P2(Rd+2) with marginal USd on (a, b)}

Definition (Conjugate RKHS)

For a predictor h : Rd → R, its conjugate RKHS norm is

‖h‖F2 := min

{∫
|c |22 dµ(w) ; h =

∫
φ(w , ·) dµ(w), µ ∈ S

}
Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

1

n

n∑
i=1

`(h(xi ), yi ) + λ‖h‖F2 .

• Solving: F2 random features, convex optim. / F1 difficult

• Priors: F2 isotropic smoothness / F1 anisotropic smoothness 10/20



Implicit bias in the unregularized

case



Preliminary: linear classification and exponential loss

Classification task

• Y ∈ {−1, 1} and the prediction is sign(h(X ))

• `(y , y ′) = exp(−y ′y) or logistic `(y , y ′) = log(1 + exp(−y ′y))

• no regularization (λ = 0)

Theorem (Soudry et al. 2018, reformulated)

Consider h(w , x) = wᵀx and a linearly separable training set. For

any w(0), the normalized gradient flow w̄(t) = w(t)/‖w(t)‖2

converges to a ‖ · ‖2-max-margin classifier, i.e. a solution to

max
‖w‖2≤1

min
i∈[n]

yi · wᵀxi .

[Refs]:

Soudry, Hoffer, Nacson, Gunasekar, Srebro (2018). The Implicit Bias of Gradient Descent on Separable Data.
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Interpretation as online optimization

• look at w ′(t) = ∇F1(w(t)), where Fβ is the smooth-margin:

Fβ(w) = − 1

β
log

(
1

n

n∑
i=1

exp(−βyi · wᵀxi )

)
−−−→
β→∞

min
i

yi ·wᵀxi

• prove that ‖w(t)‖ → ∞ if the training set is linearly separable

• denoting w̄(t) = w(t)/‖w(t)‖2, it holds

d

dt
w̄(t) =

1

‖w(t)‖
∇F‖w(t)‖(w̄(t))−αtw̄(t)

for some αt > 0 that constraints w̄(t) to the sphere

• “thus” w̄(t) performs online projected gradient ascent on the

sequence of objectives F‖w(t)‖ which converge to the margin.

12/20



Implicit bias of two-layer neural networks

Let us go back to wide two-layer ReLU neural networks.

Theorem (C. & Bach, 2020)

Assume that µ0 = USd ⊗U{−1,1}, that the training set is consistant

( [xi = xj ]⇒ [yi = yj ]) and that µt and ∇F (µt) converge in

direction (i.e. after normalization). Then h(µt , ·)/‖h(µt , ·)‖F1

converges to the F1-max-margin classifier, i.e. it solves

max
‖h‖F1

≤1
min
i∈[n]

yih(xi ).

• no efficient algorithm is known to solve this problem

• fixing the hidden layer leads to the F2-max-margin classifier

[Refs]:

Chizat, Bach. Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].
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Illustration

h(µt , ·) for the logistic loss, λ = 0 (d = 2)
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Statistical efficiency

Assume that ‖X‖2 ≤ R a.s. and that, for some r ≤ d , it holds a.s.

∆(r) ≤ sup
π

{
inf

yi 6=yi′
‖π(xi )− π(xi ′)‖2 ; π is a rank r projection

}
.

Theorem (C. & Bach, 2020)

The F1-max-margin classifier h∗ admits the risk bound, with

probability 1− δ (over the random training set),

P(Y h∗(X ) < 0)︸ ︷︷ ︸
proportion of mistakes

.
1√
n

[( R

∆(r)

) r
2

+2
+
√

log(1/δ)
]
.

• this is strong dimension independent non-asymptotic bound

• for learning in F2 only the bound with r = d is true

• this task is asymptotically easy (the rate n−1/2 is suboptimal)

[Refs]:

Chizat, Bach. Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...]. 15/20



Numerical experiments

Setting

Two-class classification in dimension d = 15:

• two first coordinates as shown on the right

• all other coordinates uniformly at random

Coordinates 1 & 2
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Two implicit biases in one dynamics

Lazy training (informal)

All other things equal, if the variance at initialization is large and

the step-size is small then the model behaves like its first order

expansion over a significant time.

• Each neuron hardly moves but the total

change in h(µt , ·) is significant

• Here the linearization converges to a

max-margin classifier in the tangent

RKHS (similar to F2)

• Eventually converges to F1-max-margin

[Refs]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

Chizat, Oyallon, Bach (2018). On Lazy Training in Differentiable Programming.

Woodworth et al. (2019). Kernel and deep regimes in overparametrized models. 17/20



Wasserstein-Fisher-Rao gradient

flows for optimization



Convex optimization on measures

Definition (2-homogeneous projection)

Let Π2 : P2(Rd+2)→M+(Sd+1) satisfy ∀ φ ∈ C(Rd+2) 2-hmgn.:∫
Rd+2

φ(w) dµ(w) =

∫
Sd+1

φ(θ) dΠ2[µ](θ)

• With ν = Π2[µ], notice that we were in fact solving:

min
ν∈M+(Sd+1)

J(ν) = R

(∫
Sd+1

Φ(θ) dν(θ)

)
+ λν(Sd+1)

• Inspiration to solve general convex optimization on measures?

Convex optimization on measures

Let Θ a d-manifold, J convex and with enough regularity. Solve

min
ν∈M+(Θ)

J(ν).
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Conic Particle Gradient Descent

Algorithm (conic particle gradient descent)

For α, β > 0, discretize (with retractions) the gradient flow{
r ′i (t) = −4ri (t)J ′νt (θt(t))

θ′i (t) = −∇J ′νt (θi (t))

where νt = 1
m

∑m
i=1 ri (t)δθi (t) and J ′ν is the differential of J at ν.

0

(a) Sparse deconv. (b) 2-layer neural net.

 equivalent to gradient flow on a 2-layer ReLU neural net
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Some properties

• νt is a Wasserstein-Fisher-Rao gradient flow of J, i.e. solves

∂tνt = −div
(
−∇J ′νtνt

)
− 4J ′νtνt

• If ν0 has full support and νt ⇀ ν∞ then ν∞ minimizes J

For “non-degenerate sparse” problems:

• local exponential convergence

• ε-accurate solution in O(log(1/ε))

• but m exponential in d so far

Sparse deconvolution (white)

sources (red) particles.

[Refs]

Chizat (2019). Sparse Optimization on Measures with Over-parameterized Gradient Descent 20/20



Conclusion

• Generalization guarantees for gradient methods on neural nets

• Analysis via Wasserstein gradient flow with homogeneity

Perspectives

• Proof of convergence, quantitative results

• More complex architectures

[Papers :]

- Chizat and Bach (2018). On the Global Convergence of

Over-parameterized Models using Optimal Transport

- Chizat (2019). Sparse Optimization on Measures with

Over-parameterized Gradient Descent

- Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide

Two-layer Neural Networks Trained with the Logistic Loss
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