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Supervised learning with neural networks

Supervised machine learning
e Consider a couple of random variables (X, Y) on RY x R

e Given n i.i.d. samples (x;, y;)7_;, build h such that h(X) =~ Y

Wide 2-layer ReLU neural networks

Class of predictors h of the form, for some large width m € N,
h((wj)j, x) = Z¢(WJ7X)

where ¢(w, x) := cmax{a’x + b,0} and w := (a, b, ¢) € RI+2,

~~ ¢ is 2-homogeneous in w, i.e. ¢(rw, x) = r’¢p(w, x),¥r > 0

Learning algorithm: selects (w;); using the training data
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Gradient flow of the empirical risk

Empirical risk minimization
e Choose a loss £ : R2 — R convex & smooth in its 15t variable

e “Minimize” the empirical risk with a regularization A > 0

A m
Fm((w));) : Zf(h( wj)j, i), yi)  + EZHWJHE
=1

~ N——

empirical risk (optional) regularization

Gradient-based learning

o Initialize w1(0), ..., wm(0) % 1o € Pa(RI+2)

e Decrease the non-convex objective via gradient flow, for t > 0,

d
L (w()) = ~mFnl((0))

~ in practice, discretized with variants of gradient descent 2/20



lHlustration

Dynamics for a classification task: unregularized logistic loss, d = 2

0.5
Space of parameters Space of predictors
e plot |c|-(a, b) e (+/—) training set
e color depends on sign of ¢ e color shows h((w;(t));,-)

e tanh radial scale e line shows 0 level set 3/20



Motivations

Main question

What is performance of the learnt predictor h((w;j(c0))j,-) ?

Understanding 2-layer networks: when are they powerful?

~ role of initialization pyo, loss, regularization, data structure, etc.

Understanding representation learning via back-propagation

~~ not captured by current theories for deeper models who study

perturbative regimes around the initialization

Natural next theoretical step after linear models

~~ we can't understand the deep if we don't understand the shallow

Beautiful connections with rich mathematical theories

~~ variation norm spaces, Wasserstein gradient flows
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Global convergence in the infinite width limit
Generalization with regularization
Implicit bias in the unregularized case

Wasserstein-Fisher-Rao gradient flows for optimization
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Global convergence in the infinite
width limit



Wasserstein gradient flow formulation

e Parameterize with a probability measure 1 € Po(R9+2)

(. x) = / o(w, x) dpa(w)

e Objective on the space of probability measures
1 n
Fln) = > b)) + A [ [wl du(w)
i=1

Theorem (dynamical infinite width limit, adapted to ReLU)
Assume that
spt(uo) € {lc|* = Ilall3 + |5/}

As m — 00, frm = % ZJ"’Zl Sw,(t) converges in Po(R4*2) to puy,
the unique Wasserstein gradient flow of F starting from py.

[Refs]:
Ambrosio, Gigli, Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures. 5/20



Global convergence

Theorem (C. & Bach, '18, adapted to RelLU)
Assume that pig = Usa @ Ug_1 1y. If e converges to oo in
P2(R9+2), then po is a global minimizer of F.

e Initialization matters: the key assumption on pyq is diversity
e Corollary: limm t—o0 F(tm,t) = min F
e Convergence of p;: open question (even with compactness)

Generalization bounds?
They depend on the objective F and the data. If F is the ...
e regularized empirical risk: “just” statistics (this talk)
e unregularized empirical risk: need implicit bias (this talk)

e population risk: need convergence speed (open question)

[Refs]:
Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...]. 6/20



lllustration: population risk

Stochastic gradient descent on population risk (m = 100, d = 1)
Teacher-student setting: X ~ Usqs and Y = *(X) where f* is a
ReLU neural network with 5 units (dashed lines)

Square loss £(y,y") = (y — y')?.

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...]. 7/20
Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.



Generalization with regularization




Variation norm

Definition (Variation norm)

For a predictor h : RY — R, its variation norm is

Il = _gin, {3 [ Il autw)s 1) = [ otw ) aute) |

— ){HVHTv; ) = | max{aTx+b,O}dy(a,b)}

veM(sd

Proposition

If ¥ € Po(RI+2) minimizes F then h(u*,-) minimizes

1 n
=D (%), yi) + 27| 1hll 7
i=1

[Refs]:
Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks.
Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation 8/20



Generalization with variation norm regularization

Regression of a Lipschitz function
Assume that X is bounded and Y = *(X) where f* is 1-Lipschitz.
Error bound on E[(h(X) — f*(X))?] for any estimator h?

~~ in general > n~9 unavoidable (curse of dimensionality)

Anisotropy assumption:

What if moreover f*(x) = g(m,(x)) for some rank r projection m,?

Theorem (Bach ’14, reformulated)

For a suitable choice of regularization A\(n) > 0, the minimizer of F
with ((y,y") = (y — y')? enjoys an error bound in O(n=/("+3)).

e methods with fixed features (e.g. kernels) remain ~ n=1/¢
e no need to bound the number m of units

[Refs]:
Bach. (2014). Breaking the curse of dimensionality with convex neural networks
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Fixing hidden layer and conjugate RKHS

What if we only train the output layer?
~ Let S := {u € Pr(R9+2) with marginal Uss on (a, b)}

Definition (Conjugate RKHS)
For a predictor h: RY — R, its conjugate RKHS norm is

I, = min{ [ Ieautw)s b= [ o(w.)dutu). ue s}

Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

1 n
3 UG ) + Al

i=1

e Solving: F, random features, convex optim. / Fi difficult
e Priors: F; isotropic smoothness / Fj anisotropic smoothness 10/20



Implicit bias in the unregularized
case




Preliminary: linear classification and exponential loss

Classification task
e Y € {—1,1} and the prediction is sign(h(X))
o U(y,y") = exp(—y'y) or logistic £(y,y") = log(1 + exp(—y'y))

e no regularization (A = 0)

Theorem (Soudry et al. 2018, reformulated)

Consider h(w, x) = wTx and a linearly separable training set. For
any w(0), the normalized gradient flow w(t) = w(t)/||w(t)|2
converges to a || - ||2-max-margin classifier, i.e. a solution to

ax min y;- w'x;.
HW||2<1I€[H]

[Refs]:
Soudry, Hoffer, Nacson, Gunasekar, Srebro (2018). The Implicit Bias of Gradient Descent on Separable Data.
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Interpretation as online optimization

e look at w/(t) = VFi(w(t)), where Fg is the smooth-margin:

1 1o :
Fa(w) = ~3 log (n Zexp(—ﬁy,- : WTX,')> m min yi-wTx;
i=1

e prove that ||w(t)|| — oo if the training set is linearly separable
e denoting w(t) = w(t)/[|w(t)]2, it holds
d _ 1 _ _
Ew(t) = WVFHW(t)H(W(t))*”rtw(t)
for some a; > 0 that constraints w(t) to the sphere

e “thus” w(t) performs online projected gradient ascent on the

sequence of objectives fy,, ()| which converge to the margin.

12/20



Implicit bias of two-layer neural networks

Let us go back to wide two-layer ReLU neural networks.

Theorem (C. & Bach, 2020)

Assume that po = Usa @ Uy_1 1y, that the training set is consistant
( [xi = xj] = [vi = y;]) and that p: and V F () converge in
direction (i.e. after normalization). Then h(p¢,-)/| h(pt, )| 7
converges to the F1-max-margin classifier, i.e. it solves

max min y;h(x;).
Il <t et 2

e no efficient algorithm is known to solve this problem

e fixing the hidden layer leads to the F,-max-margin classifier

[Refs]:
Chizat, Bach. Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].
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lHlustration

Training output layer Training both layers

+ 4+ +1 - * M At 1- +
— 3 -
o = s =
¥ ¥
+ 1 - + a - 3
- & -~ +

h(ut, -) for the logistic loss, A =0 (d = 2)
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Statistical efficiency

Assume that || X]||2 < R a.s. and that, for some r < d, it holds a.s.

A(r) < sup{ iQf [(xi) — m(xi)|[2 ; = is a rank r projection} .
™ YiFYi

Theorem (C. & Bach, 2020)

The F1-max-margin classifier h* admits the risk bound, with

probability 1 — § (over the random training set),

P(Y I"(X) < 0) \% [(A’:r))£+2 + \/Iog(l/d)]

proportion of mistakes

e this is strong dimension independent non-asymptotic bound
e for learning in F» only the bound with r = d is true
e this task is asymptotically easy (the rate n=%/2 is suboptimal)

[Refs]: 15/20

Chizat, Bach. Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].



Numerical experiments

:": *;K f"‘f'
Setting *
Two-class classification in dimension d = 15: R T
e two first coordinates as shown on the right asw g
-
H it _Z

e all other coordinates uniformly at random
Coordinates 1 & 2

0.5 m—both layers
output Tayer 0.01 } +

o 0.4 c .
o -
C 03 2 [+
o © +
Jg’_; 0.2 %
[ &~
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(a) Test error vs. n (b) Margin vs. m (n = 256)
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Two implicit biases in one dynamics

Lazy training (informal)

All other things equal, if the variance at initialization is large and
the step-size is small then the model behaves like its first order
expansion over a significant time.

e Each neuron hardly moves but the total
change in h(uzt, ) is significant

e Here the linearization converges to a
max-margin classifier in the tangent
RKHS (similar to F?)

e Eventually converges to Fi-max-margin

[Refs]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

Chizat, Oyallon, Bach (2018). On Lazy Training in Differentiable Programming.

Woodworth et al. (2019). Kernel and deep regimes in overparametrized models. 17/20



Wasserstein-Fisher-Rao gradient
flows for optimization




Convex optimization on measures

Definition (2-homogeneous projection)
Let My : Pp(RY*2) — M (S9*1) satisfy V ¢ € C(R9*2) 2-hmgn.:

/ o(w) du(w / 6(6) dMa[11](60)

e With v = lMy[u], notice that we were in fact solving:

”eMnli(%dH)J(V) =R (/SCM ¢(9)dy(9)> Ow(S4H)

e Inspiration to solve general convex optimization on measures?

Convex optimization on measures
Let © a d-manifold, J convex and with enough regularity. Solve
min _J(v).

vEM(®) 18/20



Conic Particle Gradient Descent

Algorithm (conic particle gradient descent)

For a,, B > 0, discretize (with retractions) the gradient flow

ri(t)
0i(t)

> ity ri(t)dg,(¢) and J,, is the differential of J at v.

—4ri(t)J,,(0:(t))
=V, (0i(t))

where vy = %

(a) Sparse deconv. (b) 2-layer neural net.

. . 19/20
~+ equivalent to gradient flow on a 2-layer ReLU neural net



Some properties

e v; is a Wasserstein-Fisher-Rao gradient flow of J, i.e. solves
8tut = —div (—VJLtVt) - 4Jl,/tyt

e If 1y has full support and vy — v then vo, minimizes J

For “non-degenerate sparse” problems:
e local exponential convergence

e c-accurate solution in O(log(1/¢))

e but m exponential in d so far

Sparse deconvolution (white)

sources (red) particles.

[Refs]
Chizat (2019). Sparse Optimization on Measures with Over-parameterized Gradient Descent 20/20



Generalization guarantees for gradient methods on neural nets
Analysis via Wasserstein gradient flow with homogeneity

Proof of convergence, quantitative results
More complex architectures

[Papers :]

- Chizat and Bach (2018). On the Global Convergence of
Over-parameterized Models using Optimal Transport

- Chizat (2019). Sparse Optimization on Measures with
Over-parameterized Gradient Descent

- Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide
Two-layer Neural Networks Trained with the Logistic Loss
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