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Introduction



Optimization on Measures

Setting

• Θ compact d-Riemannian manifold without boundaries

• M+(Θ) nonnegative finite Borel measures

• φ : Θ→ F smooth, F separable Hilbert space

• R : F → R+ convex and smooth, λ ≥ 0

min
ν∈M+(Θ)

J(ν) := R

(∫
Θ
φ(θ)dν(θ)

)
+ λν(Θ)

In this talk

Simple non-convex gradient descent algorithms reaching ε-accuracy

in O(log(1/ε)) complexity under non-degeneracy assumptions.
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Dealing with the signed case

Consider a function φ̃ : Θ̃→ F and J̃ :M(Θ̃)→ R defined as

J̃(ν) = R

(∫
φ̃ dµ

)
+ λ|ν|(Θ̃)

• define Θ the disjoint union of two copies Θ̃+ and Θ̃− of Θ̃

• define φ : Θ→ F as

φ(θ) =

+φ̃(θ) if θ ∈ Θ̃+

−φ̃(θ) if θ ∈ Θ̃−

Proposition

The signed and the nonnegative formulations are equivalent:

• minima are the same

• given a minimizer for one problem, we can build a minimizer

for the other
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Motivating example (I): Signal Processing

Sparse deconvolution

Recover a sparse signal µ =
∑m

i=1 wiδθi
from a filtered version y = ϕ ∗ µ+ noise

Variational approach (B-LASSO)

min
µ∈M(Θ)

1

2
‖y − ϕ ∗ µ‖2

L2︸ ︷︷ ︸
loss

+ λ‖µ‖TV︸ ︷︷ ︸
regularization

[Refs]

Candès, Fernandez-Granda (2014). Towards a mathematical theory of super-resolution.

Azäıs, De Castro, Gamboa (2015). Spike detection from inaccurate samplings.

Duval, Peyré (2015). Exact support recovery for sparse spikes deconvolution.

...
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Motivating example (II): Machine Learning

Supervised Learning

Let (X ,Y ) a couple of r.v. on Rd × R
and a smooth convex loss ` : R2 → R+.

Given n samples (xi , yi )
n
i=1, “solve”

min
f :Rd→R

E `(f (X ),Y )

Neural network with 1 hidden layer

Write fµ(x) =
∫
σ(θ · x)dµ(θ) and solve

min
µ∈M(Θ)

1

n

n∑
i=1

`(fµ(xi ), yi )︸ ︷︷ ︸
loss

+ λ|µ|(Θ)︸ ︷︷ ︸
regularization

[Refs:]

Bengio, Roux, Vincent, Delalleau, Marcotte (2006). Convex neural networks.

Bach (2017). Breaking the curse of dimensionality with convex neural networks.
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Demotivating Example

Continuous optimization

Let φ : Θ→ R be an arbitrary smooth function with minimum

φ? < 0. Solve

min
θ∈Θ

φ(θ)

Convex formulation

min
ν∈M+(Θ)

1

2

(
2 +

∫
Θ
φ(θ)dν(θ)

)2

+ λν(Θ)

Proposition (Equivalence)

It if λ < −2φ? then spt ν? ⊂ arg minφ and ν(Θ) > 0.

 exponential complexity in the dimension d is unavoidable
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Particle Gradient Descent

Algorithm (general case)

• initialize with discrete measure ν = 1
m

∑m
i=1 r

p
i δθi , with p ≥ 1

• run gradient descent (or variant) on (ri , θi )
m ∈ (R+ ×Θ)m

Questions for theory

1. What choice for p? for the metric on R+ ×Θ?

2. Is it a consistent method? for which initialization?

3. Are there computational complexity guarantees?
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Conic Particle Gradient Descent

Algorithm (conic particle gradient descent)

Take p = 2 and discretize (with retractions) the gradient flow{
r ′i (t) = −2αri (t)J ′νt (θt(t))

θ′i (t) = −β∇J ′νt (θi (t)).

where J ′ν(θ) = 〈φ(θ),∇R(
∫
φ dν)〉+ λ “is” the Fréchet derivative

of J at ν and νt = 1
m

∑m
i=1 ri (t)2δθi (t).

0

(a) Sparse deconv. (b) 2-layer neural net.

0

(c) Generic optim. 7/27



Illustration

Figure 2: Sparse deconvolution on T2 with Dirichlet kernel

(white) sources (red) particles.
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Interpretations

The conic particle gradient flow can be seen as...

• gradient flow in (R+ ×Θ)m with the (product) cone metric

• when Θ is the sphere, gradient flow on (Rd+1)m

• Wasserstein gradient flow in P2(R+×Θ) with the cone metric

• Wasserstein-Fisher-Rao gradient flow on M+(Θ)
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Structure on R+ ×Θ

Definition (Cone metric)

〈(δr1, δθ1), (δr2, δθ2)〉(r ,θ) :=
1

α
δr1 · δr2 +

r2

β
〈δθ1, δθ2〉θ

• posing cosπ(z) = cos(min{π, z}), the distance is given by

dist((r1, θ1), (r1, θ2))2 = r2
1 + r2

2 − 2r1r2 cosπ(dist(θ1, θ2))

• when Θ = Sd , the map (r , θ)→ rθ ∈ Rd+1 is an isometry

• automatic structure when φ is 2-homogeneous on Rd+1

Θ× {1}

R+

•
Θ× {0}

×
(r1, θ1)

×
(r2, θ2)
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Gradient flow in Wasserstein space

Consider, on the space P2(R+ ×Θ):

• the trajectory µt = 1
m

∑m
i=1 δ(ri (t),θi (t))

• the objective F (µ) = J(hµ) where hµ(B) =
∫
r2µ( dr ,B)

Optimal transport interpretation

(µt)t is the Wasserstein gradient flow of F , where R+ ×Θ is

endowed with the cone metric.

• Wasserstein gradient flows are weak solutions of

∂tνt = −div
(
−∇F ′µtµt

)
where F ′µ ∈ C1(Θ) “is” the Fréchet derivative of F at µ

• div/∇ defined in the cone metric on R+ ×Θ

 gives existence and uniqueness for initialization in P2(R+ ×Θ)

[Refs]

Ambrosio, Gigli, Savaré (2008). Gradient flows in metric spaces and in the space of probability measures. 11/27



Gradient flow in Wasserstein Fisher-Rao space

Consider, on the space M+(Θ):

• the trajectory νt = 1
m

∑m
i=1 ri (t)2δθi (t)

• the objective J(ν)

Unbalanced optimal transport interpretation

(νt)t is the Wasserstein-Fisher-Rao gradient flow of J.

• Wasserstein-Fisher-Rao gradient flows are weak solutions of

∂tνt = −div
(
−∇J ′νtνt

)
− 4J ′νtνt

• this metric can be defined as (W2 in the cone metric)

WFR(ν1, ν2) = min {W2(µ1, µ2) ; (hµ1, hµ2) = (ν1, ν2)}

• all statements could be made alternatively on µt or νt .
[Refs]

Liero, Mielke, Savare (2015). Optimal Entropy-Transport Problems and a new Hellinger-Kantorovich metric [...].

Kondratiev, Monsaingeon, Vorotnikov (2015), A new optimal transport distance on the space of [...] measures.

Chizat, Peyré, Schmitzer, Vialard (2015). An interpolating distance between optimal transport and Fisher-Rao.

Gallouët, Monsaingeon (2017). A JKO Splitting Scheme for Kantorovich–Fisher–Rao Gradient Flows.
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Other Methods

pros cons

conditional gradient known rate, sparse 1 iter. is hard

moment methods asymptotically exact heavy, not generic

particle gradient flow easy, cheap iteration guarantees ?

[Refs]:

Lasserre (2010). Moments, positive polynomials and their applications.

Bredies, Pikkarainen (2013).Inverse problems in spaces of measures.

Frank, Wolfe (1956). An algorithm for quadratic programming.

Bach (2017). Breaking the curse of dimensionality with convex neural networks.

Catala, Duval, Peyré (2017). A low-rank approach to off-the-grid sparse deconvolution.

...

13/27



Global convergence



Many-particle / mean-field limit

Theorem

Assume that ν0,m → ν0 weakly. Then νt,m → νt weakly, uniformly

on [0,T ], where (νt)t≥0 is the Wasserstein-Fisher-Rao gradient

flow of J starting from ν0.

[Refs]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...]
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Asymptotic Global Convergence

Assumptions: λ ≥ 0, Sard-type property (e.g. φ ∈ Cd(Θ))

Theorem (Chizat and Bach, 2018)

If ν0 has full support on Θ and (νt)t≥0 converges as t →∞, then

the limit is a global minimizer of J.

Moreover, if νm,0 → ν0 weakly as m→∞, then

lim
m,t→∞

J(νm,t) = min
ν∈M+(Θ)

J(ν).

Remarks

• bad stationnary point exist, but are avoided thanks to the init.

• such results hold for more general particle gradient flows

• can we say more for the conic and sparse case?

[Refs]

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized models [...]. 15/27



Numerical Illustrations

ReLU network, d = 2, optimal predictor has 5 neurons (pop. risk)
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Local convergence



Assumptions for the local analysis

Sparse minimizer

Assume that ν? =
∑m?

i=1 r
2
i δθi is the unique minimizer of J

Non-degeneracy

Typical in the analysis of such sparse problems

Assume (everything in normal coordinates around θi ):

• (coercivity) ∇2R � σId at the optimum

• (local curvature) Hi = ∇2J ′ν?(θi ) � 0

• (strict slackness) J ′ν? does not vanish except at θ1, . . . , θm?

• (global interaction) one has K � 0, where

K(i ,j),(i ′,j ′) =
〈
ri∇̄jΦ(θi ),∇2R(

∫
Φ dµ?)(ri ′∇̄j ′Φ(θi ′))

〉
where ∇̄Φ = (2αΦ, β∇Φ) .
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Sharpness/Polyak- Lojasiewicz Inequality

Theorem (C., 2019)

Under these assumptions, there exists J0, κ0 > 0 such that for any

ν ∈M+(Θ) satisfying J(ν) ≤ J0, it holds∫ (
4α|J ′ν |2 + β‖∇J ′ν‖2

θ

)
dν︸ ︷︷ ︸

Squared-norm of gradient

≥ κ0 min{α, β} (J(ν)− J?)︸ ︷︷ ︸
Optimality gap

.

• J0 and κ0 polynomial in the problem characteristics

• crucially, J0 is independent of the over-parameterization

Corollary

If J(ν0) ≤ J0, gradient flow and gradient descent (with max{α, β}
small enough) converge exponentially fast to the global minimizer,

in value and in distance (e.g. Bounded-Lipschitz, WFR).
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Proof idea (I)

Fix a small radius τ , partition Θ as{
Θi := {θ ∈ Θ ; dist(θ, θi ) < τ}
Θ0 := Θ \ ∪mi=1Θi

For ν ∈M+(Θ), let (in normal coordinates):

r̄2
i :=

∫
Θi

dν(θ) (mean mass)

θ̄i :=
1

r̄2
i

∫
Θi

θ dν(θ) (mean position)

Σi :=
1

r̄2
i

∫
Θi

(θ − θ̄i )(θ − θ̄i )ᵀ dν(θ)

(centered covariance of position)

r2 = 0

×(r2
i , θi )

(r̄2
i , θ̄i )

•
•

•
×

Θ

19/27



Proof idea (II)

Then, Taylor expansions lead to controls on J(ν) and the gradient

norm that only depend on ri , r̄i , θi , θ̄i ,Σi .

Remarks

•  Lojasiewicz inequalities in Wasserstein space recently studied

(e.g. logarithmic Sobolev inequality & relative entropy), but in

the geodesically convex case

• analysis enabled by the specific structure related to p = 2 and

the cone metric

[Refs]

Wisibono (2018). Sampling as optimization in the space of measures

Blanchet, Bolte (2018). A Family of Functional Inequalities: Lojasiewicz inequalities and displacement convex

functions.
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Insights on local rates

We get a local expansion of J (b vector of biases, Σi local covariances):

J(ν)− J? ≈ 1

2
bᵀ(K + λH)b +

λ

2

m∑
i=1

r2
i tr(ΣiHi ) +

∫
Θ0

J ′ν?dν

Local rate vs regularization and over-parameterization

Local convergence for 2D sparse deconvolution
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Quantitative Global Convergence



Quantitative Global Convergence

Fine tuning

Particule gradient descent can be used after any optimization

algorithm : discrete convex optimization, conditional gradient...

 Can we use a single algorithm?

Theorem (C., 2019)

For M, ε > 0 fixed, there exists C1,C2 > 0 such that if for η > 0,

W∞(ν0,Mvol) < C1η and
β

α
< C2η

2(1+ε)

then for αt ≥ C3/η
1+ε it holds J(νt)− J? ≤ η. It particular, if this

holds for η = J0− J?, then (νt)t≥0 converges to a global minimizer.

Via samples or a grid: W∞(ν0, vol) � m−1/d with m particles.
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Proof Idea: Perturbed Mirror Descent

Lemma (Mirror descent rate)

The dynamic with β = 0 satisfies, for some C > 0,

J(νt)− J(ν?) . inf
ν∈M+(Θ)

{
‖ν? − ν‖BL +

1

Ct
H(ν, ν0)

}
.

log t

t
if ν0 ∝ d vol

where H is the relative entropy (Kullback-Leibler divergence).

Proof idea of the theorem.

Adapt this lemma to deal with β > 0.

• discrete time dynamics & choice of retraction: see paper
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Importance of the geometry

Comparison of p = 1 and p = 2 for finding one spike

0

Mirror descent

0

Euclidean descent

illustration

(d = 1, β = 0)
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• multiplicative updates are crucial for efficiency

• moreover, conic geometry is crucial for the local analysis

• still, global convergence also true for p = 1
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Rates for the fully non-convex case ?

Sub-optimality gap after convergence
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 the condition β/α� 1 does not seem important: removing it is

an open problem

Proposition (No condition on β/α)

There exists C > 0 such that for all t, η > 0, as long as νs ≥ η vol

for 0 ≤ s ≤ t, then

J(νt)− J? ≤ C√
ηt
.
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High-level remarks on the algorithm

Comparison with conditional gradient

Both algorithms typically involve two types of computational costs:

• computing ∇R(
∫
φ dµt)

• given this, updating the position and/or mass of m particles

 other trade-offs are possible

Potential variants:

• inexact gradients (stochastic, delayed)

• resampling

• adaptive methods

[Refs]

Wei, Lee, Liu, Ma (2019). Regularization Matters: Generalization and Optimization of Neural Nets v.s. their

Induced Kernel.
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Conclusion

Conic particle gradient descent with

theoretical garanties

Perspectives

• extension to the constrained case

• high dimensional quantitative results

• implicit bias for the unregularized case

[Papers :]

- Chizat and Bach (2018). On the Global Convergence of

Over-parameterized Models using Optimal Transport.

- Chizat (2019). Solving Sparse optimization on Measures with

Over-Parameterized Gradient Descent.
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Convex vs non-convex

Comparison

Excess loss at convergence vs number of particles m
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(a) Sparse deconvolution (d = 1)
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Vertical dashed line shows the nb of particles of simplest minimizer
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