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Supervised learning with neural networks

Prediction/classification task
e Couple of random variables (X, Y) on RY x R
e Given ni.i.d. samples (x;, yi)"_;, build hs.t. h(X) = Y

Wide 2-layer ReLU neural network (3)); (by);
For a width m > 1, predictor h given by
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~ ¢ is 2-homogeneous in w, i.e. ¢(rw,x) = r’¢(w, x),Vr > 0



Gradient flow of the empirical risk

U(p,y) = log(1 +exp(—yp)) (logistic)
Up,y) = (y — p)? (square)

Convex smooth loss /:

Empirical risk with weight decay (A > 0)
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empirical risk (optional) regularization

Gradient flow
o Initialize w1 (0), ..., wm(0) & 1o € Po(RIH! x R)
e Decrease the non-convex objective via gradient flow, for t > 0,
d
13 (Wi(1)j = =mVFm((w;(1));)

~ in practice, discretized with variants of gradient descent



lllustration : logistic loss, unregularized (\ = 0)
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Space of parameters Space of predictors
e plot |bj| - a; e (+/—) training set
e color depends on sign of b; e color shows h((w;(t));,-)
e tanh radial scale e line shows O level set

Main question
What is performance of the learnt predictor h((w;(c0))j,-) ?



Infinite width limit: global convergence
Regularized case: function spaces

Unregularized case: implicit regularization



Infinite width limit: global
convergence



Dynamics in the infinite width limit

e Parameterize with a probability measure ;i € P,(R9+2)

(s x) = / o(w, x) dp(w)

e Objective on the space of probability measures?

Fl) = > b))+ [ w3 du(w)
i=1

Theorem (dynamical infinite width limit, adapted to RelLU)

Assume that
spt(po) C {(a,b) € R xR ; ||a]l2 = |b]}.

As m — 00, figm = = > L1 Ow(r) converges a.s. in P> (R¥*2) to
¢, the unique Wasserstein gradient flow of F starting from py.

1. For RelU, take expectations over small perturbations of the x;.

Ambrosio, Gigli, Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures



Global convergence

Theorem (C. & Bach, '18, adapted to RelLU)
Assume that po = Uss ® Uy_1 1y and technical conditions. If pu.
converges weakly to o, then oo is a global minimizer of F.
e Initialization matters: the key assumption on gy is diversity
e Corollary: limpm t—y00 F(ftm,t) = min F

e Open question: convergence of j¢

Performance of the learnt predictor?
Depends on the objective F and the data! If F is the ...

e regularized empirical risk: “just” statistics (this talk)
e unregularized empirical risk: need implicit bias (this talk)

e population risk: need convergence speed (open question)

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].



Illustration: teacher student

Success rate

Figure 2: Success rate when

Figure 1: SGD on expected square loss, d =100, m* =10

X ~Uss and Y = h((w})™, X)

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks
Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.



Regularized case: function spaces




Variation norm

Definition (Variation norm)

For a predictor h : RY — R, its variation norm is
. 1
Itz _min, {5 [IwlBann) i 400 = [ om0 auo)
= min ){HVHT\/ ; h(x) = /(aT[x; 1]+ dl/(a)}

veM(S9

Proposition

If ;1* € P2(RI+2) minimizes F then h(u*,-) minimizes

1 n
- > U(h(xi), yi) + 21l 7,
i=1

Barron (1993). Universal approximation bounds for superpositions of a sigmoidal function.
Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation
Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks.



Fixing the hidden layer and conjugate RKHS

What if we only train the output layer?
~ Let S := {u € Po(R9*2) with marginal Uss on input weights}

Definition (Conjugate RKHS)
For a predictor h: R — R, its conjugate RKHS norm is

413, = min{ [ 16Bdu(a.b) i h= [ 6w du(w), € 5

Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

1 n
=D Uh(x). yi) + Allhl1 %,
i=1



lllustration of the predictor

Predictor learnt via gradient descent (square loss & weight decay)
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(a) Training both layers (Fi-norm) (b) Training output layer (F2-norm)
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Stat. prior | Adaptivity to anisotropy Isotropic smoothness
Optim. No guarantee | Guaranteed efficiency

Bach (2014). Breaking the curse of dimensionality with convex neural networks.



Unregularized case: implicit
regularization




Preliminary: linear classification with exponential loss

Classification task
e Y € {—1,1} and prediction is sign(h(X))

— square
logistic

e no regularization (A = 0)

—exp

e loss with an exponential tail

e exponential ¢(p,y) = exp(—py), or
o logistic {(p, y) = log(1 + exp(—py)) Loss for y =1

Theorem (SHNGS 2018, reformulated)
Consider h(w, x) = wTx and a linearly separable training set. For

any w(0), the normalized gradient flow w(t) = w(t)/||w(t)||2
converges to a || - ||2-max-margin classifier, i.e. a solution to

max_min y; - w'x;.
lwl2<1i€[n]

Telgarsky (2013). Margins, shrinkage, and boosting.
Soudry, Hoffer, Nacson, Gunasekar, Srebro (2018). The Implicit Bias of Gradient Descent on Separable Data.



Implicit regularization for linear classification: illustration

Implicit bias of gradient descent for classification (d = 2)



Implicit regularizations for 2-layer neural networks

Back to wide 2-layer ReLU neural networks.

Theorem (C. & Bach, 2020)

Assume that po = Use @ Uy_1 1), that the training set is consistant
( [xi = xj] = [vi = y;]) and technical conditions (in particular, of
convergence). Then h(uz,-)/||h(pe, )|l 7 converges to the
Fi1-max-margin classifier, i.e. it solves

max min y;h(x;).
Il <t et 2

e fixing the hidden layer leads to the F>-max-margin classifier

e we also prove convergence speed bounds in simpler settings

Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].



lHlustration

Training output layer Training both layers

T o -+ pERE ]
e ~ -
- = s =
¥ ¥
+ 1l — . + b = -
E E P K

h(pe, -) for the exponential loss, A =0 (d = 2)



Numerical experiments

:‘? *@ f"*f*
Setting C
Two-class classification in dimension d = 15: s e e
e two first coordinates as shown on the right o e L
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e all other coordinates uniformly at random
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(a) Test error vs. n (b) Margin vs. m (n = 256)



Statistical efficiency

Assume that || X]||2 < D a.s. and that, for some r < d, it holds a.s.

A(r) < sup{ inf ||m(x;) — w(xi7)||2 ; 7 is a rank r projection} .
™ YiFYil

Theorem (C. & Bach, 2020)
The F1-max-margin classifier h* admits the risk bound, with
probability 1 — § (over the random training set),

r

P(Y h(X) < 0) < \}E [(A‘(Dr))Q+2 + /Iog(1/5)]

proportion of mistakes

e this is a strong dimension independent non-asymptotic bound
e for learning in F> the bound with r = d is true
e this task is asymptotically easy (the rate n=1/2 is suboptimal)

[Refs]:
Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].



Two implicit regularizations in one dynamics (1)

Lazy training (informal)
All other things equal, if the variance at initialization is large and
the step-size is small then the model behaves like its first order

expansion over a significant time.

e Neurons hardly move but significant total change in h(u¢, -)

e Here, the linearization converges to a max-margin classifier in
the tangent RKHS (similar to F5)

e Eventually converges to Fi-max-margin

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.
Chizat, Oyallon, Bach (2018). On Lazy Training in Differentiable Programming.
Woodworth et al. (2019). Kernel and deep regimes in overparametrized models.



Two implicit regularizations in one dynamics (Il)

T 1
R ;"‘ S
T,

Space of parameters Space of predictors

See also: Moroshko, Gunasekar, Woodworth, Lee, Srebro, Soudry (2020). Implicit Bias in Deep Linear
Classification: Initialization Scale vs Training Accuracy.



Perspectives

e Open question: make statements of this talk quantitative
~~ how fast is the convergence ? how many neurons are needed?

e Mathematical models for deeper networks

~> goal: formalize training dynamics & study generalization

[Talk based on the following papers:]
- Chizat, Bach (NeurlPS 2018). On the Global Convergence of Over-parameterized

Models using Optimal Transport.
- Chizat, Oyallon, Bach (NeurlPS 2019). On Lazy Training in Differentiable

Programming.
- Chizat, Bach (COLT 2020). Implicit Bias of Gradient Descent for Wide Two-layer

Neural Networks Trained with the Logistic Loss.



Generalization with variation norm regularization

Regression of a Lipschitz function
Assume that X is bounded and Y = *(X) where f* is 1-Lipschitz.
Error bound on E[(h(X) — f*(X))?] for any estimator h?

~~ in general = n~%9 unavoidable (curse of dimensionality)

Anisotropy assumption:
What if moreover f*(x) = g(m,(x)) for some rank r projection 7,?

Theorem (Bach 14, reformulated)

For a suitable choice of regularization \(n) > 0, the minimizer of F
with square loss enjoys an error bound in O(n=1/("+3)).

e methods with fixed features (e.g. kernels) remain ~ n=1/9

e no need to bound the number m of units

Bach (2014). Breaking the curse of dimensionality with convex neural networks.



Proof Intuition (Global Convergence Thm.)

e Using homogeneity & convexity, u* minimizes F iff
(i) %F(u*)[w] =0, for u*-a.e w (<= stationary point of PDE)

(i) 52 F(u*)w] =0

e If 1o has mass in all directions, so does pu: for any t > 0

e If i does not satisfy (ii), then p: cannot be trapped near [

e Thus if 1 converges, its limit is a minimizer of F by (i) & (ii)
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