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Supervised learning with neural networks

Prediction/classification task

• Couple of random variables (X ,Y ) on Rd × R

• Given n i.i.d. samples (xi , yi )
n
i=1, build h s.t. h(X ) ≈ Y

Wide 2-layer ReLU neural network

For a width m� 1, predictor h given by

h((wj)j , x) :=
1

m

m∑
j=1

φ(wj , x)

where

{
φ(w , x) := b (a>[x ; 1])+

w := (a, b) ∈ Rd+1 × R
.

x [1]

x [2]

1

h(x)

Hidden layerInput Output

(bj)j(aj)j

 φ is 2-homogeneous in w , i.e. φ(rw , x) = r2φ(w , x),∀r > 0
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Gradient flow of the empirical risk

Convex smooth loss `:

`(p, y) = log(1 + exp(−yp)) (logistic)

`(p, y) = (y − p)2 (square)

Empirical risk with weight decay (λ ≥ 0)

Fm((wj)j) :=
1

n

n∑
i=1

`(h((wj)j , xi ), yi )︸ ︷︷ ︸
empirical risk

+
λ

m

m∑
j=1

‖wj‖2
2︸ ︷︷ ︸

(optional) regularization

Gradient flow

• Initialize w1(0), . . . ,wm(0)
i.i.d∼ µ0 ∈ P2(Rd+1 × R)

• Decrease the non-convex objective via gradient flow, for t ≥ 0,

d

dt
(wj(t))j = −m∇Fm((wj(t))j)

 in practice, discretized with variants of gradient descent
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Illustration : logistic loss, unregularized (λ = 0)

Space of parameters
• plot |bj | · aj
• color depends on sign of bj
• tanh radial scale

Space of predictors
• (+/−) training set

• color shows h((wj(t))j , ·)
• line shows 0 level set

Main question

What is performance of the learnt predictor h((wj(∞))j , ·) ?
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Outline

Infinite width limit: global convergence

Regularized case: function spaces

Unregularized case: implicit regularization



Infinite width limit: global

convergence
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Dynamics in the infinite width limit

• Parameterize with a probability measure µ ∈ P2(Rd+2)

h(µ, x) =

∫
φ(w , x)dµ(w)

• Objective on the space of probability measures1

F (µ) :=
1

n

n∑
i=1

`(h(µ, xi ), yi ) + λ

∫
‖w‖2

2 dµ(w)

Theorem (dynamical infinite width limit, adapted to ReLU)

Assume that

spt(µ0) ⊂ {(a, b) ∈ Rd+1 × R ; ‖a‖2 = |b|}.

As m→∞, µt,m = 1
m

∑m
j=1 δwj (t) converges a.s. in P2(Rd+2) to

µt , the unique Wasserstein gradient flow of F starting from µ0.

1. For ReLU, take expectations over small perturbations of the xi .

Ambrosio, Gigli, Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.
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Global convergence

Theorem (C. & Bach, ’18, adapted to ReLU)

Assume that µ0 = USd ⊗ U{−1,1} and technical conditions. If µt

converges weakly to µ∞, then µ∞ is a global minimizer of F .

• Initialization matters: the key assumption on µ0 is diversity

• Corollary: limm,t→∞ F (µm,t) = minF

• Open question: convergence of µt

Performance of the learnt predictor?

Depends on the objective F and the data! If F is the ...

• regularized empirical risk: “just” statistics (this talk)

• unregularized empirical risk: need implicit bias (this talk)

• population risk: need convergence speed (open question)

Chizat, Bach (2018). On the Global Convergence of Gradient Descent for Over-parameterized Models [...].



8/24

Illustration: teacher student

Figure 1: SGD on expected square loss,

X ∼ USd and Y = h((w∗
i )m

∗

i=1,X )

Figure 2: Success rate when

d = 100, m∗ = 10

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.



Regularized case: function spaces
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Variation norm

Definition (Variation norm)

For a predictor h : Rd → R, its variation norm is

‖h‖F1 := min
µ∈P2(Rd+2)

{
1

2

∫
‖w‖2

2 dµ(w) ; h(x) =

∫
φ(w , x)dµ(w)

}
= min

ν∈M(Sd )

{
‖ν‖TV ; h(x) =

∫
(a>[x ; 1])+ dν(a)

}
Proposition

If µ∗ ∈ P2(Rd+2) minimizes F then h(µ∗, ·) minimizes

1

n

n∑
i=1

`(h(xi ), yi ) + 2λ‖h‖F1 .

Barron (1993). Universal approximation bounds for superpositions of a sigmoidal function.

Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation.

Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks.
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Fixing the hidden layer and conjugate RKHS

What if we only train the output layer?

 Let S := {µ ∈ P2(Rd+2) with marginal USd on input weights}

Definition (Conjugate RKHS)

For a predictor h : Rd → R, its conjugate RKHS norm is

‖h‖2
F2

:= min

{∫
|b|22 dµ(a, b) ; h =

∫
φ(w , ·) dµ(w), µ ∈ S

}
Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

1

n

n∑
i=1

`(h(xi ), yi ) + λ‖h‖2
F2
.
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Illustration of the predictor

Predictor learnt via gradient descent (square loss & weight decay)

(a) Training both layers (F1-norm) (b) Training output layer (F2-norm)

F1 F2

Stat. prior Adaptivity to anisotropy Isotropic smoothness

Optim. No guarantee Guaranteed efficiency

Bach (2014). Breaking the curse of dimensionality with convex neural networks.



Unregularized case: implicit

regularization
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Preliminary: linear classification with exponential loss

Classification task

• Y ∈ {−1, 1} and prediction is sign(h(X ))

• no regularization (λ = 0)

• loss with an exponential tail

• exponential `(p, y) = exp(−py), or

• logistic `(p, y) = log(1 + exp(−py)) Loss for y = 1

Theorem (SHNGS 2018, reformulated)

Consider h(w , x) = wᵀx and a linearly separable training set. For

any w(0), the normalized gradient flow w̄(t) = w(t)/‖w(t)‖2

converges to a ‖ · ‖2-max-margin classifier, i.e. a solution to

max
‖w‖2≤1

min
i∈[n]

yi · wᵀxi .

Telgarsky (2013). Margins, shrinkage, and boosting.

Soudry, Hoffer, Nacson, Gunasekar, Srebro (2018). The Implicit Bias of Gradient Descent on Separable Data.
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Implicit regularization for linear classification: illustration

Implicit bias of gradient descent for classification (d = 2)
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Implicit regularizations for 2-layer neural networks

Back to wide 2-layer ReLU neural networks.

Theorem (C. & Bach, 2020)

Assume that µ0 = USd ⊗U{−1,1}, that the training set is consistant

( [xi = xj ]⇒ [yi = yj ]) and technical conditions (in particular, of

convergence). Then h(µt , ·)/‖h(µt , ·)‖F1 converges to the

F1-max-margin classifier, i.e. it solves

max
‖h‖F1

≤1
min
i∈[n]

yih(xi ).

• fixing the hidden layer leads to the F2-max-margin classifier

• we also prove convergence speed bounds in simpler settings

Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].
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Illustration

h(µt , ·) for the exponential loss, λ = 0 (d = 2)
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Numerical experiments

Setting

Two-class classification in dimension d = 15:

• two first coordinates as shown on the right

• all other coordinates uniformly at random
Coordinates 1 & 2
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(b) Margin vs. m (n = 256)
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Statistical efficiency

Assume that ‖X‖2 ≤ D a.s. and that, for some r ≤ d , it holds a.s.

∆(r) ≤ sup
π

{
inf

yi 6=yi′
‖π(xi )− π(xi ′)‖2 ; π is a rank r projection

}
.

Theorem (C. & Bach, 2020)

The F1-max-margin classifier h∗ admits the risk bound, with

probability 1− δ (over the random training set),

P(Y h∗(X ) < 0)︸ ︷︷ ︸
proportion of mistakes

.
1√
n

[( D

∆(r)

) r
2

+2
+
√

log(1/δ)
]
.

• this is a strong dimension independent non-asymptotic bound

• for learning in F2 the bound with r = d is true

• this task is asymptotically easy (the rate n−1/2 is suboptimal)

[Refs]:

Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].
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Two implicit regularizations in one dynamics (I)

Lazy training (informal)

All other things equal, if the variance at initialization is large and

the step-size is small then the model behaves like its first order

expansion over a significant time.

• Neurons hardly move but significant total change in h(µt , ·)
• Here, the linearization converges to a max-margin classifier in

the tangent RKHS (similar to F2)

• Eventually converges to F1-max-margin

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks.

Chizat, Oyallon, Bach (2018). On Lazy Training in Differentiable Programming.

Woodworth et al. (2019). Kernel and deep regimes in overparametrized models.
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Two implicit regularizations in one dynamics (II)

Space of parameters Space of predictors

See also: Moroshko, Gunasekar, Woodworth, Lee, Srebro, Soudry (2020). Implicit Bias in Deep Linear

Classification: Initialization Scale vs Training Accuracy.
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Perspectives

• Open question: make statements of this talk quantitative

 how fast is the convergence ? how many neurons are needed?

• Mathematical models for deeper networks

 goal: formalize training dynamics & study generalization

[Talk based on the following papers:]

- Chizat, Bach (NeurIPS 2018). On the Global Convergence of Over-parameterized

Models using Optimal Transport.

- Chizat, Oyallon, Bach (NeurIPS 2019). On Lazy Training in Differentiable

Programming.

- Chizat, Bach (COLT 2020). Implicit Bias of Gradient Descent for Wide Two-layer

Neural Networks Trained with the Logistic Loss.
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Generalization with variation norm regularization

Regression of a Lipschitz function

Assume that X is bounded and Y = f ∗(X ) where f ∗ is 1-Lipschitz.

Error bound on E
[
(h(X )− f ∗(X ))2

]
for any estimator h?

 in general � n−1/d unavoidable (curse of dimensionality)

Anisotropy assumption:

What if moreover f ∗(x) = g(πr (x)) for some rank r projection πr?

Theorem (Bach ’14, reformulated)

For a suitable choice of regularization λ(n) > 0, the minimizer of F

with square loss enjoys an error bound in Õ(n−1/(r+3)).

• methods with fixed features (e.g. kernels) remain ∼ n−1/d

• no need to bound the number m of units

Bach (2014). Breaking the curse of dimensionality with convex neural networks.
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Proof Intuition (Global Convergence Thm.)

• Using homogeneity & convexity, µ∗ minimizes F iff

(i) δ
δµF (µ∗)[w ] = 0, for µ∗-a.e w (⇐ stationary point of PDE)

(ii) δ
δµF (µ∗)[w ] ≥ 0

• If µ0 has mass in all directions, so does µt for any t ≥ 0

• If µ̄ does not satisfy (ii), then µt cannot be trapped near µ̄

• Thus if µt converges, its limit is a minimizer of F by (i) & (ii)
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