

Analysis of Gradient Descent on Wide Two-Layer ReLU Neural Networks

Lénaïc Chizat * , joint work with Francis Bach $^{+}$

Nov 23rd 2021 - MAD seminar - ETHZ

*EPFL +INRIA and ENS Paris

Supervised learning with neural networks

Prediction/classification task

- Couple of random variables (X, Y) on $\mathbb{R}^d \times \mathbb{R}$
- Given *n* i.i.d. samples $(x_i, y_i)_{i=1}^n$, build *h* s.t. $h(X) \approx Y$

Wide 2-layer ReLU neural network

For a width $m \gg 1$, predictor h given by

$$h((w_j)_j, x) := \frac{1}{m} \sum_{j=1}^m \phi(w_j, x)$$

where
$$egin{cases} \phi(w,x) := b \, (a^{ op}[x;1])_+ \ w := (a,b) \in \mathbb{R}^{d+1} imes \mathbb{R} \end{cases}$$

Input Hidden layer Output

 $\rightarrow \phi$ is 2-homogeneous in w, i.e. $\phi(rw,x) = r^2\phi(w,x), \forall r > 0$

Gradient flow of the empirical risk

Convex smooth loss
$$\ell$$
:
$$\begin{cases} \ell(p,y) = \log(1 + \exp(-yp)) & \text{(logistic)} \\ \ell(p,y) = (y-p)^2 & \text{(square)} \end{cases}$$

Empirical risk with weight decay ($\lambda \ge 0$)

$$F_m((w_j)_j) := \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(h((w_j)_j, x_i), y_i)}_{\text{empirical risk}} + \underbrace{\frac{\lambda}{m} \sum_{j=1}^m \|w_j\|_2^2}_{\text{(optional) regularization}}$$

Gradient flow

- Initialize $w_1(0), \ldots, w_m(0) \stackrel{\text{i.i.d}}{\sim} \mu_0 \in \mathcal{P}_2(\mathbb{R}^{d+1} \times \mathbb{R})$
- Decrease the non-convex objective via gradient flow, for $t \ge 0$,

$$\frac{\mathrm{d}}{\mathrm{d}t}(w_j(t))_j = -m\nabla F_m((w_j(t))_j)$$

→ in practice, discretized with variants of gradient descent

Illustration : logistic loss, unregularized ($\lambda = 0$)

Space of parameters

- plot $|b_j| \cdot a_j$
- color depends on sign of b_j
- tanh radial scale

Space of predictors

- (+/-) training set
- color shows $h((w_j(t))_j, \cdot)$
- line shows 0 level set

Main question

What is performance of the learnt predictor $h((w_i(\infty))_i, \cdot)$?

Outline

Infinite width limit: global convergence

Regularized case: function spaces

Unregularized case: implicit regularization

Infinite width limit: global convergence

Dynamics in the infinite width limit

ullet Parameterize with a probability measure $\mu \in \mathcal{P}_2(\mathbb{R}^{d+2})$

$$h(\mu, x) = \int \phi(w, x) \, \mathrm{d}\mu(w)$$

• Objective on the space of probability measures¹

$$F(\mu) := \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mu, x_i), y_i) + \lambda \int \|w\|_2^2 d\mu(w)$$

Theorem (dynamical infinite width limit, adapted to ReLU)

Assume that

$$\operatorname{spt}(\mu_0) \subset \{(a,b) \in \mathbb{R}^{d+1} \times \mathbb{R} ; \|a\|_2 = |b|\}.$$

As $m \to \infty$, $\mu_{t,m} = \frac{1}{m} \sum_{j=1}^m \delta_{w_j(t)}$ converges a.s. in $\mathcal{P}_2(\mathbb{R}^{d+2})$ to μ_t , the unique Wasserstein gradient flow of F starting from μ_0 .

^{1.} For ReLU, take expectations over small perturbations of the x_i .

Global convergence

Theorem (C. & Bach, '18, adapted to ReLU)

Assume that $\mu_0 = \mathcal{U}_{\mathbb{S}^d} \otimes \mathcal{U}_{\{-1,1\}}$ and technical conditions. If μ_t converges weakly to μ_{∞} , then μ_{∞} is a global minimizer of F.

- ullet Initialization matters: the key assumption on μ_0 is diversity
- Corollary: $\lim_{m,t\to\infty} F(\mu_{m,t}) = \min F$
- ullet Open question: convergence of μ_t

Performance of the learnt predictor?

Depends on the objective F and the data! If F is the ...

- regularized empirical risk: "just" statistics (this talk)
- unregularized empirical risk: need implicit bias (this talk)
- population risk: need convergence speed (open question)

Illustration: teacher student

Figure 1: SGD on expected square loss, $X \sim \mathcal{U}_{\mathbb{S}^d}$ and $Y = h((w_i^*)_{i=1}^{m^*}, X)$

Figure 2: Success rate when d = 100, $m^* = 10$

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...]. Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Regularized case: function spaces

Variation norm

Definition (Variation norm)

For a predictor $h: \mathbb{R}^d \to \mathbb{R}$, its variation norm is

$$||h||_{\mathcal{F}_1} := \min_{\mu \in \mathcal{P}_2(\mathbb{R}^{d+2})} \left\{ \frac{1}{2} \int ||w||_2^2 d\mu(w) \; ; \; h(x) = \int \phi(w, x) d\mu(w) \right\}$$
$$= \min_{\nu \in \mathcal{M}(\mathbb{S}^d)} \left\{ ||\nu||_{TV} \; ; \; h(x) = \int (a^{\top}[x; 1])_+ d\nu(a) \right\}$$

Proposition

If $\mu^* \in \mathcal{P}_2(\mathbb{R}^{d+2})$ minimizes F then $h(\mu^*,\cdot)$ minimizes

$$\frac{1}{n}\sum_{i=1}^{n}\ell(h(x_{i}),y_{i})+2\lambda\|h\|_{\mathcal{F}_{1}}.$$

Barron (1993). Universal approximation bounds for superpositions of a sigmoidal function.

Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation.

Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks.

Fixing the hidden layer and conjugate RKHS

What if we only train the output layer?

 \leadsto Let $\mathcal{S}:=\{\mu\in\mathcal{P}_2(\mathbb{R}^{d+2}) \text{ with marginal } \mathcal{U}_{\mathbb{S}^d} \text{ on input weights}\}$

Definition (Conjugate RKHS)

For a predictor $h: \mathbb{R}^d \to \mathbb{R}$, its conjugate RKHS norm is

$$\|h\|_{\mathcal{F}_2}^2 := \min \left\{ \int |b|_2^2 \,\mathrm{d}\mu(a,b) \; ; \; h = \int \phi(w,\cdot) \,\mathrm{d}\mu(w), \; \mu \in \mathcal{S}
ight\}$$

Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

$$\frac{1}{n}\sum_{i=1}^{n}\ell(h(x_{i}),y_{i})+\lambda\|h\|_{\mathcal{F}_{2}}^{2}.$$

Illustration of the predictor

Predictor learnt via gradient descent (square loss & weight decay)

(a) Training both layers (\mathcal{F}_1 -norm) (b) Training output layer (\mathcal{F}_2 -norm)

	\mathcal{F}_1	\mathcal{F}_2
Stat. prior	Adaptivity to anisotropy	Isotropic smoothness
Optim.	No guarantee	Guaranteed efficiency

Unregularized case: implicit regularization

Preliminary: linear classification with exponential loss

Classification task

- $Y \in \{-1,1\}$ and prediction is sign(h(X))
- no regularization $(\lambda = 0)$
- loss with an exponential tail
 - exponential $\ell(p, y) = \exp(-py)$, or
 - logistic $\ell(p, y) = \log(1 + \exp(-py))$

Loss for
$$y = 1$$

Theorem (SHNGS 2018, reformulated)

Consider $h(w,x)=w^\intercal x$ and a linearly separable training set. For any w(0), the normalized gradient flow $\bar{w}(t)=w(t)/\|w(t)\|_2$ converges to a $\|\cdot\|_2$ -max-margin classifier, i.e. a solution to

$$\max_{\|w\|_2 \le 1} \min_{i \in [n]} y_i \cdot w^\mathsf{T} x_i.$$

Implicit regularization for linear classification: illustration

Implicit bias of gradient descent for classification (d = 2)

Implicit regularizations for 2-layer neural networks

Back to wide 2-layer ReLU neural networks.

Theorem (C. & Bach, 2020)

Assume that $\mu_0 = \mathcal{U}_{\mathbb{S}^d} \otimes \mathcal{U}_{\{-1,1\}}$, that the training set is consistant $([x_i = x_j] \Rightarrow [y_i = y_j])$ and technical conditions (in particular, of convergence). Then $h(\mu_t, \cdot) / \|h(\mu_t, \cdot)\|_{\mathcal{F}_1}$ converges to the \mathcal{F}_1 -max-margin classifier, i.e. it solves

$$\max_{\|h\|_{\mathcal{F}_1} \le 1} \min_{i \in [n]} y_i h(x_i).$$

- ullet fixing the hidden layer leads to the \mathcal{F}_2 -max-margin classifier
- we also prove convergence speed bounds in simpler settings

Illustration

 $\mathit{h}(\mu_t,\cdot)$ for the exponential loss, $\lambda=0$ (d=2)

Numerical experiments

Setting

Two-class classification in dimension d = 15:

- two first coordinates as shown on the right
- all other coordinates uniformly at random

Coordinates 1 & 2

(a) Test error vs. n

(b) Margin vs. m (n = 256)

Statistical efficiency

Assume that $||X||_2 \le D$ a.s. and that, for some $r \le d$, it holds a.s.

$$\Delta(\mathbf{r}) \leq \sup_{\pi} \left\{ \inf_{y_i \neq y_{i'}} \|\pi(x_i) - \pi(x_{i'})\|_2 ; \pi \text{ is a rank } \mathbf{r} \text{ projection} \right\}.$$

Theorem (C. & Bach, 2020)

The \mathcal{F}_1 -max-margin classifier h^* admits the risk bound, with probability $1-\delta$ (over the random training set),

$$\underbrace{\mathbf{P}(Y\,h^*(X)<0)}_{\textit{proportion of mistakes}}\lesssim \frac{1}{\sqrt{n}}\Big[\Big(\frac{D}{\Delta(\textbf{r})}\Big)^{\frac{\textbf{r}}{2}+2}+\sqrt{\log(1/\delta)}\Big].$$

- this is a strong dimension independent non-asymptotic bound
- for learning in \mathcal{F}_2 the bound with r = d is true
- this task is asymptotically easy (the rate $n^{-1/2}$ is suboptimal)

[Refs]:

Two implicit regularizations in one dynamics (I)

Lazy training (informal)

All other things equal, if the variance at initialization is large and the step-size is small then the model behaves like its first order expansion over a significant time.

- ullet Neurons hardly move but significant total change in $h(\mu_t,\cdot)$
- ullet Here, the linearization converges to a max-margin classifier in the tangent RKHS (similar to \mathcal{F}_2)
- ullet Eventually converges to \mathcal{F}_1 -max-margin

Two implicit regularizations in one dynamics (II)

See also: Moroshko, Gunasekar, Woodworth, Lee, Srebro, Soudry (2020). Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy.

Perspectives

- Open question: make statements of this talk quantitative
 - → how fast is the convergence ? how many neurons are needed?
- Mathematical models for deeper networks
 - → goal: formalize training dynamics & study generalization

[Talk based on the following papers:]

- Chizat, Bach (NeurIPS 2018). On the Global Convergence of Over-parameterized Models using Optimal Transport.
- Chizat, Oyallon, Bach (NeurIPS 2019). On Lazy Training in Differentiable Programming.
- Chizat, Bach (COLT 2020). Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss.

Generalization with variation norm regularization

Regression of a Lipschitz function

Assume that X is bounded and $Y = f^*(X)$ where f^* is 1-Lipschitz.

Error bound on $\mathbf{E}[(h(X) - f^*(X))^2]$ for any estimator h?

 \rightarrow in general $\succeq n^{-1/d}$ unavoidable (curse of dimensionality)

Anisotropy assumption:

What if moreover $f^*(x) = g(\pi_r(x))$ for some rank r projection π_r ?

Theorem (Bach '14, reformulated)

For a suitable choice of regularization $\lambda(n) > 0$, the minimizer of F with square loss enjoys an error bound in $\tilde{O}(n^{-1/(r+3)})$.

- methods with fixed features (e.g. kernels) remain $\sim n^{-1/d}$
- no need to bound the number m of units

Proof Intuition (Global Convergence Thm.)

- Using homogeneity & convexity, μ^* minimizes F iff
 - (i) $\frac{\delta}{\delta\mu}F(\mu^*)[w]=0$, for μ^* -a.e w (\Leftarrow stationary point of PDE) (ii) $\frac{\delta}{\delta\mu}F(\mu^*)[w]\geq 0$
- If μ_0 has mass in all directions, so does μ_t for any t > 0
- If $\bar{\mu}$ does not satisfy (ii), then μ_t cannot be trapped near $\bar{\mu}$

• Thus if μ_t converges, its limit is a minimizer of F by (i) & (ii)