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A motivating problem: density fitting

Find a map f such that Loss(f#µref, µtarget) is small.

• Choose an objective loss and a parametric family {fθ ; θ ∈ Θ}
• Run a gradient-based algorithm to select θ

Examples: diffeomorphic matching, generative models

Important properties for the loss (Wasserstein, MMD, etc)

• favorable computational and statistical behavior

• informative gradient (strong when loss is high)
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Illustration with the Sinkhorn divergence loss

Simplest case: fθ = θ (L2-gradient descent); regularization λ ≥ 0

λ� 1 (approx. Wasserstein) λ� 1 (approx. MMD)

• in the end, we would like to understand the trade-offs at play

in the choice of λ in such dynamics...

• ... but for now, we’ll focus on the estimating the loss 2/20



Wasserstein loss

Definition (Set of transport plans between µ, ν ∈ P(Rd))

Nonnegative measures on Rd × Rd with marginals µ and ν:

Π(µ, ν) :=
{
γ ∈ P(Rd × Rd) : proj1#γ = µ, proj2#γ = ν

}
ν

µ
γ

Product coupling

γ = µ⊗ ν

ν

µ

γ

Deterministic coupling

γ = (Id × T )#µ

Definition (Wasserstein loss)

W 2
2 (µ, ν) := min

γ∈Π(µ,ν)

∫
Rd×Rd

‖y − x‖2
2dγ(x , y)
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Statistical & Computational Optimal Transport

Goal: estimate W 2
2 efficiently from samples

Let µ and ν be probability densities on the unit ball in Rd . Given

µ̂n =
1

n

n∑
i=1

δxi and ν̂n =
1

n

n∑
i=1

δyi

empirical distributions of n independent samples, estimate

W 2
2 (µ, ν) := min

γ∈Π(µ,ν)

∫
‖y − x‖2

2 dγ(x , y),

where Π(µ, ν) is the set of transport plans.

How difficult is this task?

Can entropic regularization help?

[Related refs]:

Forrow et al. (2019). Statistical optimal transport via factored couplings.

Hütter, Rigollet (2019). Minimax rates of estimation for smooth optimal transport maps.

Niles-Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance.

Niles-Weed, Rigollet (2019). Estimation of Wasserstein distances in the spiked transport model.

Liang (2019). On the Minimax Optimality of Estimating the Wasserstein Metric. ...
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The plug-in estimator



Plug-in estimator for W 2
2

Theorem (CRLVP’20)

E
[
|W 2

2 (µ̂n, ν̂n)−W 2
2 (µ, ν)|

]
.


n−2/d if d > 4,

n−1/2 log(n) if d = 4,

n−1/2 if d < 4.

• prev. known bound: n−1/d [e.g. Boissard & LeGouic (2014)]

• concentrates around its expectation (variance . n−1/2)

• extended by [Manole & Niles-Weed, 2021], for d > 4,

E
[
|W p

p (µ̂n, ν̂n)−W p
p (µ, ν)|

]
.

n−p/d if 1 ≤ p ≤ 2,

n−2/d if p ≥ 2,

Also prove tightness of bounds & cover the non compact case

[Refs:]

Chizat, Roussilon, Léger, Vialard, Peyré (2020). Faster Wasserstein Distance Estimation with the Sinkhorn

Divergence.

Manole, Niles-Weed (2021). Sharp Convergence Rates for Empirical Optimal Transport with Smooth Costs.
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Entropic regularization



Entropy Regularized Optimal Transport

Let λ ≥ 0 and H(µ, ν) =
∫

log
( dµ
dν

)
dµ be the relative entropy.

Tλ(µ, ν) := min
γ∈Π(µ,ν)

∫
‖y − x‖2

2 dγ(x , y) + 2λH(γ, µ⊗ ν)

• a.k.a. the Schrödinger bridge

• favors diffuse solutions

• assume λ ≤ 1/2 in the following

• the higher λ, the easier to solve

[Refs]:

Léonard (2012). From the Schrödinger problem to the Monge–Kantorovich problem.

Kosowsky, Yuille (1994). The invisible hand algorithm

Cuturi (2013). Sinkhorn Distances: Lightspeed Computation of Optimal Transport 6/20



Computational bound to compute Tλ(µ̂n, ν̂n) via Sinkhorn

Sinkhorn’s iterations

Let ci ,j = 1
2‖xi − yj‖2

2, v (0) = 0 ∈ Rn and compute for k ≥ 1:

u
(k)
i = −λ log

1

n

n∑
j=1

e(v
(k−1)
j −ci,j )/λ and v

(k)
j = −λ log

1

n

n∑
i=1

e(u
(k)
i −ci,j )/λ.

The current estimate is T̂
(k)
λ,n = 2

n

∑
i (u

(k)
i + v

(k)
i ).

Proposition (Dvurechensky et al., building on Altschuler et al.,)

After k iterations, it holds

|T̂ (k)
λ,n − T̂λ,n| . λ−1k−1.

; Reaches ε-accuracy in time O(n2λ−1ε−1)
[Refs]:

Altschuler, Niles-Weed, Rigollet (2017). Near-linear time approximation algorithms for optimal transport [...].

Dvurechensky, Gasnikov, Kroshnin (2018). Computational optimal transport [...]
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Approximation error

Proposition (Approximation error)

E[|W 2
2 (µ, ν)− Tλ(µ, ν)|] . λ log(1/λ)

• Remember that T0 = W 2
2 by definition.

• Simple proof: approximate the optimal transport plan with a

plan of finite entropy that is piecewise proportional to µ⊗ ν
• bound tight for densities (see asymptotic expansion later)

• finer results for the discrete case [Niles-Weed (2018)]

[Refs]:

Pal (2019). On the difference between entropic cost and the optimal transport cost.

Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences.

Niles-Weed (2018). An explicit analysis of the entropic penalty in linear programming.
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Discrete optimal transport via Sinkhorn

Shortcuts:T̂λ,n = Tλ(µ̂n, ν̂n), Ŵ 2
2,n = W 2

2 (µ̂n, ν̂n), W 2
2 = W 2

2 (µ, ν).

Error decomposition (I)

E
[
|T̂λ,n −W 2

2 |
]
≤ E

[
|T̂λ,n − Ŵ 2

2,n|
]︸ ︷︷ ︸

Approximation error
.λ log(1/λ)

+ E
[
|Ŵ 2

2,n −W 2
2 |
]︸ ︷︷ ︸

Estimation error
. n−2/d (if d > 4)

• With λ � n−2/d , we get Õ(n−2/d) accuracy (if d > 4)

Can we see entropy as a statistical regularization instead ?

Can we use larger values of λ?
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Standard error decomposition of a regularized estimator

k : nb of Sinkhorn iterations

n: nb of samples

λ: regularization strength

|T̂ (k)
λ,n − T0|︸ ︷︷ ︸

Total error

≤ |T̂ (k)
λ,n − T̂λ,n|︸ ︷︷ ︸

Optimization error

+ |T̂λ,n − Tλ|︸ ︷︷ ︸
Estimation error

+ |Tλ − T0|︸ ︷︷ ︸
Approximation error

• in the following we ignore the optimization error

• we focus on expectation bounds as all quantities concentrate

rapidly

• online algorithms would require a different error decomposition

[Refs]:

Bottout, Bousquet (2007). The Tradeoffs of Large Scale Learning.
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Estimation error of Tλ

Theorem (Estimation)

E[|Tλ(µ̂n, ν̂n)− Tλ(µ, ν)|] . λ−d/2n−1/2

Tλ is also stable under deterministic sampling, see [CRLVP,20].

For smooth densities and a regular grid:

|Tλ(µn, νn)− Tλ(µ, ν)| . min{λ−1n−2/d , n−1/d}

[Refs]:

Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences.

Mena, Niles-Weed (2018). Statistical bounds for entropic optimal transport.
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Naive unsuccessful attempt

Error decomposition (II)

E
[
|T̂λ,n −W 2

2 |
]
≤ E

[
|T̂λ,n − Tλ|

]︸ ︷︷ ︸
Estimation error
.λ−d/2n−1/2

+ |Tλ −W 2
2 |︸ ︷︷ ︸

Approximation error
.λ log(1/λ)

; With λ = n−1/(d+2), we get E
[
|T̂λ −W 2

2 |
]
. n−1/(d+2) log(n)

Drawback of Tλ: poor approximation error

NB: estimation error bound potentially not tight
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Improving the Approximation Error



Sinkhorn divergence

Sλ(µ, ν) := Tλ(µ, ν)− 1

2
Tλ(µ, µ)− 1

2
Tλ(ν, ν)

• It is positive definite: Sλ(µ, ν) ≥ 0 with equality iff µ = ν

• Interpolation properties: lim
λ→0

Sλ(µ, ν) = W 2
2 (µ, ν)

lim
λ→∞

Sλ(µ, ν) = ‖EX∼µ[X ]− EY∼ν [Y ]‖2
2

• As λ increases:
• Increasing statistical and computational efficiency

• Decreasing discriminative power

How to quantify the trade-offs at play?

; interpret it as an estimator for W 2
2

[Refs]:

Genevay, Peyré, Cuturi (2019). Learning generative models with Sinkhorn divergences.

Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2019). Interpolating between Optimal Transport and MMD.
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Dynamic entropy regularized optimal transport

Let H(µ) =
∫

log(µ(x))µ(x) dx and µ, ν with bounded densities.

Theorem (Yasue formulation of the Schrödinger problem)

Tλ(µ, ν) + dλ log(2πλ) + λ(H(µ) + H(ν)) =

min
ρ,v

∫ 1

0

∫
Rd

(
‖v(t, x)‖2

2︸ ︷︷ ︸
Kinetic energy

+
λ2

4
‖∇x log(ρ(t, x))‖2

2︸ ︷︷ ︸
Fisher information

)
ρ(t, x)dx dt

where (ρ, v) solves ∂tρ+∇ · (ρv) = 0, ρ(0, ·) = µ and ρ(1, ·) = ν.

Definition (Fisher info. of the W2-geodesic)

I (µ, ν) :=

∫ 1

0

∫
Rd

‖∇x log ρ(t, x)‖2
2ρ(t, x) dx dt

[Refs]:

Chen, Georgiou, Pavon (2019). On the relation between optimal transport [...].

Conforti, Tamanini (2020). A formula for the time derivative of the entropic cost. 14/20



Tight approximation bounds

Recall assumptions: µ, ν have bounded densities and supports.

Theorem (CRLVP’20, Conforti & Tamanini, 2020)

|Sλ(µ, ν)−W 2
2 (µ, ν)| ≤ λ2

4
max{I (µ, ν), (I (µ) + I (ν))/2}.

If moreover the right-hand side is finite, it holds

Sλ(µ, ν)−W 2
2 (µ, ν) =

λ2

4

(
I (µ, ν)− (I (µ) + I (ν))/2

)
+ o(λ2).

Proof idea. (1) Immediate from Yasue formula. (2) Variational

analysis arguments to get the right derivative of λ2 7→ Sλ at 0.

• (in paper) bound I (µ, ν) given regularity of Brenier potential

• from λ log(1/λ) to λ2 for (almost) free!

• extended to a general setting in [Conforti & Tamanini, 2020]
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Richardson extrapolation

We can cancel the term in λ2 for (almost) free. Let

Rλ(µ, ν) := 2Sλ(µ, ν)− S√2λ(µ, ν).

Proposition

If µ, ν have bounded densities and I (µ, ν), I (µ), I (ν) <∞ then

|Rλ(µ, ν)−W 2
2 (µ, ν)| = o(λ2)

• Up to constants, Tλ, Sλ and Rλ have the same sample and

computational complexities but better approximation errors

• Open question: when is the remainder in O(λ4) ?

[Ref]:

Bach (2020). On the effectiveness of Richardson extrapolation in machine learning.
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Gaussian case

Let µ = N (a,A), ν = N (b,B) where a, b ∈ Rd and A,B ∈ Sd++.

If a = b, W2 is the Bures distance:

W 2
2 (µ, ν) = d2

B(A,B) := trA + trB − 2 tr(A1/2BA1/2)1/2.

Exploiting the closed-form expression for Tλ(µ, ν), we prove:

Expansion Gaussian case

Sλ(µ, ν)−W 2
2 (µ, ν) = −λ

2

8
d2
B(A−1,B−1) +

λ4

384
d2
B(A−3,B−3) + O(λ5)

• Richardson extrapolation can boost approximation rates here

• Consistent with expansion in terms of I (µ, ν), as it must.

[Refs]:

Chen, Georgiou, Pavon (2015). Optimal steering of a linear stochastic system to a final probability distribution.

Janati, Muzellec, Peyré, Cuturi (2020). Entropic Optimal Transport between Gaussian Measures [...]. 17/20



Statistical & Computational

Consequences



Sinkhorn Divergence Estimator

Shortcuts: Ŝλ,n = Sλ(µ̂n, ν̂n), Sλ = Sλ(µ, ν), W 2
2 = W 2

2 (µ, ν).

Error decomposition (II)

E
[
|Ŝλ,n −W 2

2 |
]
≤ E

[
|Ŝλ,n − Sλ|

]︸ ︷︷ ︸
Estimation error
.λ−d/2n−1/2

+ |Sλ −W 2
2 |︸ ︷︷ ︸

Approximation error
.λ2

; With λ = n−1/(d+4), we get E
[
|Ŝλ,n −W 2

2 |
]
. n−2/(d+4)

• We “almost” recover the rate of the plug-in estimator

• But with a much larger λ ! (n−1/(d+4) instead of n−2/d)

• Rate further improved w/ Richardson extrapolation Rλ(µ̂n, ν̂n)
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Numerical experiments (I): estimate W 2
2

µ, ν elliptically contoured, smooth densities, compact supports.

Absolute error on W 2
2 (d = 10, λ = 1).

• Ŝλ,n and R̂λ,n quickly reach a good estimation

• then reach a plateau (the approximation error takes-over)

• difficult to interpret because W 2
2 is a scalar...
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Numerical experiments (II): estimate dual potentials

Estimate ϕ, the Fréchet derivative of µ 7→W 2
2 (µ, ν) .

We plot the L1(µ) estimation error (d = 5).

(left) vs. n for λ = 1 (middle) vs. λ for n = 104 (right) vs. n for best λ.

Computational time to reach a target accuracy (optimizing over n and λ)
[Refs]:

Pooladian, Niles-Weed (2021) Entropic estimation of optimal transport maps
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In a nutshell

To estimate W 2
2 (µ, ν): Sλ(µ̂n, µ̂n) is “better” than W 2

2 (µ̂n, ν̂n)!

Future directions

• Which statistical bounds can be improved?

• Consequences for density fitting algorithms

[Paper :]

- Chizat, Roussillon, Léger, Vialard, Peyré (2020). Faster Wasserstein

Distance Estimation with the Sinkhorn Divergence.
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