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A motivating problem: density fitting

Find a map f such that Loss(fxfiref, fitarget) is small.

e Choose an objective loss and a parametric family {fy ; 6 € ©}

e Run a gradient-based algorithm to select 6
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Examples: diffeomorphic matching, generative models

Important properties for the loss (Wasserstein, MMD, etc)

e favorable computational and statistical behavior

e informative gradient (strong when loss is high)
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lllustration with the Sinkhorn divergence loss

Simplest case: fy = 6 (L-gradient descent); regularization A > 0
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A < 1 (approx. Wasserstein) A > 1 (approx. MMD)

e in the end, we would like to understand the trade-offs at play
in the choice of A in such dynamics...
e ... but for now, we'll focus on the estimating the loss 2/20



Wasserstein loss

Definition (Set of transport plans between y,v € P(R9))
Nonnegative measures on R? x RY with marginals ; and v:

N(u,v) == {7 € P(RY x RY) : projlyy = p, projyy = l/}

\
Nop -~

Product coupling Deterministic coupling
Y=pRv v=(ld x T)gp

Definition (Wasserstein loss)

W)= min [ Ly =xl3drix)
X

yEN(p,v) 3/20



Statistical & Computational Optimal Transport

Goal: estimate W efficiently from samples

Let 1 and v be probability densities on the unit ball in R?. Given

1 & 1 &
:n;csx, and an:nl;a,

empirical distributions of n independent samples, estimate
W3 (nv) = in /Hy—tz dy(x,y),
where N(u, ) is the set of transport plans.

How difficult is this task?
Can entropic regularization help?

[Related refs]:

Forrow et al. (2019). Statistical optimal transport via factored couplings.

Hiitter, Rigollet (2019). Minimax rates of estimation for smooth optimal transport maps
Niles-Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance.
Niles-Weed, Rigollet (2019). Estimation of Wasserstein distances in the spiked transport model.
Liang (2019). On the Minimax Optimality of Estimating the Wasserstein Metric. ..
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The plug-in estimator
Entropic regularization
Improving the Approximation Error

Statistical & Computational Consequences
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The plug-in estimator




Plug-in estimator for W}

Theorem (CRLVP’20)

n—2/d ifd > 4,
E[|WZ (fin, Dn) — Wi (. v)|] < { n=Y2log(n) ifd = 4,
n—1/2 ifd < 4.

e prev. known bound: n~'/? [e.g. Boissard & LeGouic (2014)]
e concentrates around its expectation (variance < n~1/?)
e extended by [Manole & Niles-Weed, 2021}, for d > 4,

nP/d if1<p<?2,

E[IWE (fin, 0n) = W (1, V)] S
[ P P ] n=2/d ifp>2

Also prove tightness of bounds & cover the non compact case

[Refs:]
Chizat, Roussilon, Léger, Vialard, Peyré (2020). Faster Wasserstein Distance Estimation with the Sinkhorn
Divergence. 5/20

Manole, Niles-Weed (2021). Sharp Convergence Rates for Empirical Optimal Transport with Smooth Costs.



Entropic regularization



Entropy Regularized Optimal Transport

Let A >0 and H(p,v) = [ log (%) dy be the relative entropy.

Taltyv) = min / ly — x|Bdv(x, ) + 2XH(, 1+ ® v)
yeN(p,v)

Optimal transport plan for A = 2.0e-05

e a.k.a. the Schrodinger bridge
e favors diffuse solutions
e assume A\ < 1/2 in the following

the higher )\, the easier to solve

[Refs]:

Léonard (2012). From the Schrédinger problem to the Monge—Kantorovich problem

Kosowsky, Yuille (1994). The invisible hand algorithm

Cuturi (2013). Sinkhorn Distances: Lightspeed Computation of Optimal Transport 6/20



Computational bound to compute T,(/i,, 7,) via Sinkhorn

Sinkhorn’s iterations

Let cij = L|Ixi — yjl|3, v(®) =0 € R” and compute for k > 1:

(k) _ 1N e/ (k) _ LS ¥ —er)/a
u; ——/\Iogn;ej and v ——)\Iogn;e .
J= i=

The current estimate is 7A'§k,3 = % Zi(ufk) + v,-(k)).

Proposition (Dvurechensky et al., building on Altschuler et al.,)
After k iterations, it holds

1T — Faal S AT

; ; 2y—1_—1
~> Reaches e-accuracy in time O(n“A\" e ")
[Refs]:
Altschuler, Niles-Weed, Rigollet (2017). Near-linear time approximation algorithms for optimal transport |[...]
Dvurechensky, Gasnikov, Kroshnin (2018). Computational optimal transport [...]
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Approximation error

Proposition (Approximation error)

E[|WZ (1, v) = Ta(p,v)I] S Alog(1/A)

Remember that Ty = W22 by definition.

Simple proof: approximate the optimal transport plan with a

plan of finite entropy that is piecewise proportional to u ® v

bound tight for densities (see asymptotic expansion later)

finer results for the discrete case [Niles-Weed (2018)]

[Refs]:

Pal (2019). On the difference between entropic cost and the optimal transport cost
Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences
Niles-Weed (2018). An explicit analysis of the entropic penalty in linear programming.
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Discrete optimal transport via Sinkhorn

Shortcuts: Ty n = Ta(fin, On), W2, = W(jin, Dn), WE = W2 (1, v).
Error decomposition (1)

E[| Tan — WRI] <E[|Tan— W2, +E[IWZ, — W2|]

Approximation error Estimation error
<Alog(1/X) <n=2/d (if d > 4)

o With A =< n=2/9 we get O(n=?/?) accuracy (if d > 4)

Can we see entropy as a statistical regularization instead ?
Can we use larger values of \?
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Standard error decomposition of a regularized estimator

k: nb of Sinkhorn iterations
nb of samples
A: regularization strength

=

A k A k A A
1T~ Tol < |TX — Tl + [Tan—Tal + T — Tol
—— N—_——

Estimation error ~ Approximation error

Total error Optimization error

e in the following we ignore the optimization error

e we focus on expectation bounds as all quantities concentrate
rapidly

e online algorithms would require a different error decomposition

[Refs]:
Bottout, Bousquet (2007). The Tradeoffs of Large Scale Learning.
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Estimation error of T,

Theorem (Estimation)

E[| Ta(fn Pn) — Tau, v)[] S A92n 712

T is also stable under deterministic sampling, see [CRLVP,20].
For smooth densities and a regular grid:

| Ta(ttns vn) = Talpsv)| S min{A~Ln =29, n=1/9)

[Refs]:
Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences
Mena, Niles-Weed (2018). Statistical bounds for entropic optimal transport
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Naive unsuccessful attempt

Error decomposition (I1)

E[[Tan— W3] <E[[Tan—Tal]+ |Th— W3
—_——— ———

Estimation error Approximation error
<SA—9/2p=1/2 < Alog(1/A)

~ With A = n=1/(4+2) we get E[| T\ — W2|] < n~ /(92 |og(n)

Drawback of Ty: poor approximation error

NB: estimation error bound potentially not tight
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Improving the Approximation Error




Sinkhorn divergence

1 1
S\(uv) = Ta(p,v) = 5 Talp, 1) = 5Ta(v, v)
e It is positive definite: Sy(u, ) > 0 with equality iff p = v
e Interpolation properties:

lim Sx(u,v) = W3 (1, v)

A—=0

lim S/\(/L, 7/) = ||EX~/L[X] - EYNV[Y]”g
A—00

e As X increases:
e Increasing statistical and computational efficiency
e Decreasing discriminative power

How to quantify the trade-offs at play?
~ interpret it as an estimator for W;
[Refs]:

Genevay, Peyré, Cuturi (2019). Learning generative models with Sinkhorn divergences 13/20
Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2019). Interpolating between Optimal Transport and MMD.



Dynamic entropy regularized optimal transport

Let H(p) = [ log(u (x)dx and p, v with bounded densities.

Theorem (Yasue formulation of the Schrédinger problem)

Ta(p,v) + dXlog(27A) + )\(H(u) + H(v)) =
min / L, (160013 4% 19 ogt e B e ) e
Kmetlc energy Fisher information .

where (p, v) solves Orp+ V - (pv) =0, p(0,-) = p and p(1,-) = v.
Definition (Fisher info. of the W,-geodesic)

1
)= / / |V log p(t, %) |3p(t, x) dx dt
0 Rd

[Refs]:
Chen, Georgiou, Pavon (2019). On the relation between optimal transport [...] 14/2
Conforti, Tamanini (2020). A formula for the time derivative of the entropic cost. 4/ 0



Tight approximation bounds

Recall assumptions: p, v have bounded densities and supports.

Theorem (CRLVP’20, Conforti & Tamanini, 2020)

2
[Sa(k, v) = W3 (u,v)| < % max{/(p, v), (I(p) + 1(v))/2}.

If moreover the right-hand side is finite, it holds
2

311 v) — Wal,v) = - (11, ) — (1) + 101)/2) + o(X?).

Proof idea. (1) Immediate from Yasue formula. (2) Variational

analysis arguments to get the right derivative of A — S at 0.

e (in paper) bound /(s V) given regularity of Brenier potential
e from Mlog(1/)) to A? for (almost) free!
e extended to a general setting in [Conforti & Tamanini, 2020]
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Richardson extrapolation

We can cancel the term in A2 for (almost) free. Let

Ra(p, v) :=25x(11,v) = S 55 (1, V).

Proposition

If i, v have bounded densities and I(u,v), (1), [(v) < oo then
Rk, v) = WZ ()| = o(3?)

e Up to constants, Ty, Sy and R, have the same sample and
computational complexities but better approximation errors
e Open question: when is the remainder in O(\*) ?

[Ref]:
Bach (2020). On the effectiveness of Richardson extrapolation in machine learning
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Gaussian case

Let u = N(a, A), v = N(b, B) where a,b € R? and A, B € S ..
If a= b, W, is the Bures distance:

WE(u,v) = d}(A, B) :=tr A+ tr B — 2tr(AY2BAY/2)1/2,

Exploiting the closed-form expression for Ty(u, V), we prove:

Expansion Gaussian case

22 e At 3 oo
5>\(:“7V)7 W22(:U"V):7§d28(’4 178 1)+ﬁdzB(A 338 3)+O()‘5)

e Richardson extrapolation can boost approximation rates here
e Consistent with expansion in terms of /(u, ), as it must.

[Refs]:
Chen, Georgiou, Pavon (2015). Optimal steering of a linear stochastic system to a final probability distribution
Janati, Muzellec, Peyré, Cuturi (2020). Entropic Optimal Transport between Gaussian Measures [...].
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Statistical & Computational
Consequences




Sinkhorn Divergence Estimator

Shortcuts: §,\7,, = Sx(fins Dn), Sx = Sa(p, v), WE = W2(u,v).
Error decomposition (I1)

E[|§)\,n - W22|] < E“g)\,n - SAH + |5)\ - W22|
—— ——

N——
Estimation error Approximation error
S)\fd/2n71/2 < )\2

o With A = m/(6+4), we get E|$y,, — WR[] S n-2/(@+

e We “almost” recover the rate of the plug-in estimator
e But with a much larger A | (n=1/(4+4) instead of n=2/9

e Rate further improved w/ Richardson extrapolation Ry (fin, 7p)
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Numerical experiments (I): estimate W}

1, v elliptically contoured, smooth densities, compact supports.

10° \
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1072

plug-in
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10! 102 10° 10t
number of samples

Absolute error on W2 (d = 10, A = 1).

° §,\7,, and Ii’,\m quickly reach a good estimation
e then reach a plateau (the approximation error takes-over)
e difficult to interpret because W7 is a scalar...
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Numerical experiments (l1): estimate dual potentials

Estimate ¢, the Fréchet derivative of s W2(u,v) .

We plot the L!(p) estimation error (d = 5).
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[Refs]: 20/20

Pooladian, Niles-Weed (2021) Entropic estimation of optimal transport maps



To estimate W2(u,v): Sx(fin, fin) is “better” than WZ(ji,,,)!

Which statistical bounds can be improved?
Consequences for density fitting algorithms

[Paper :]
- Chizat, Roussillon, Léger, Vialard, Peyré (2020). Faster Wasserstein
Distance Estimation with the Sinkhorn Divergence.
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