Optimal Transport :

Recap and research topics in Machine Learning

Lénaïc Chizat*
Apr. 1st 2020 - M2 optimisation, Orsay
*CNRS and Université Paris-Saclay (LMO)

A Geometric Motivation

Setting: Probability measures $\mathcal{P}(\mathcal{X})$ on a metric space $(\mathcal{X}$, dist $)$.

Goal

Build a metric on $\mathcal{P}(\mathcal{X})$ consistent with the geometry of $(\mathcal{X}$, dist $)$.

A Geometric Motivation

Setting: Probability measures $\mathcal{P}(\mathcal{X})$ on a metric space $(\mathcal{X}$, dist $)$.

Goal

Build a metric on $\mathcal{P}(\mathcal{X})$ consistent with the geometry of (\mathcal{X}, dist).

$$
\mu=\delta_{x_{1}}, \quad \nu=\delta_{y_{1}}
$$

$$
\operatorname{dist}\left(x_{1}, y_{1}\right)
$$

A Geometric Motivation

Setting: Probability measures $\mathcal{P}(\mathcal{X})$ on a metric space (\mathcal{X}, dist).

Goal

Build a metric on $\mathcal{P}(\mathcal{X})$ consistent with the geometry of (\mathcal{X}, dist).

A Geometric Motivation

Setting: Probability measures $\mathcal{P}(\mathcal{X})$ on a metric space (\mathcal{X}, dist).

Goal

Build a metric on $\mathcal{P}(\mathcal{X})$ consistent with the geometry of (\mathcal{X}, dist).

A Geometric Motivation

Setting: Probability measures $\mathcal{P}(\mathcal{X})$ on a metric space $(\mathcal{X}$, dist $)$.

Goal

Build a metric on $\mathcal{P}(\mathcal{X})$ consistent with the geometry of $(\mathcal{X}$, dist $)$.

$$
\mu, \nu \in \mathcal{P}(\mathcal{X})
$$

Distance between μ and $\nu \ldots$

Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

Origin and Ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

Strong modelization power:

- probability distribution, empirical distribution
- weighted undistinguishable particles
- density of a gas, a crowd, cells...

Early universe (Brenier et al. '08)

Crowd motion
(Roudneff et al., '12)

Color histograms (Delon et al.)

Outline

Main Theoretical Facts

A Glimpse of Applications

Computation and Approximation

Density Fitting

Losses between Probability Measures

Outline

Main Theoretical Facts

A Glimpse of Applications

Computation and Approximation

Density Fitting

Losses between Probability Measures

Definition

Ingredients

- Metric spaces \mathcal{X} and \mathcal{Y} (complete, separable)
- Cost function $c: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{\infty\}$ (lower bounded, Isc)
- Probability measures $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$

Transport map

Definition (pushforward)

Let $T: \mathcal{X} \rightarrow \mathcal{Y}$ be a map. The pushforward measure of μ by T, denoted $T_{\#} \mu$, is characterized by

$$
T_{\#} \mu(B)=\mu\left(T^{-1}(B)\right) \quad \text { for all } B \subset \mathcal{Y}
$$

If X is a random variable such that $\operatorname{Law}(X)=\mu$, then

$$
\operatorname{Law}(T(X))=T_{\#} \mu
$$

Definition

Ingredients

- Metric spaces \mathcal{X} and \mathcal{Y} (complete, separable)
- Cost function $c: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{\infty\}$ (lower bounded, Isc)
- Probability measures $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$

Definition (Monge problem)

$$
\inf _{T: \mathcal{X} \rightarrow \mathcal{Y}}\left\{\int_{\mathcal{X}} c(x, T(x)) \mathrm{d} \mu(x) ; T_{\#} \mu=\nu\right\}
$$

\leadsto in some cases: no solution, no feasible point...

Transport Plans

Definition (Set of transport plans)

Positive measures on $\mathcal{X} \times \mathcal{Y}$ with specified marginals :

$$
\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y}): \operatorname{proj}_{\#}^{\chi} \gamma=\mu, \operatorname{proj}_{\#}^{y} \gamma=\nu\right\}
$$

Product coupling

$$
\gamma=\mu \otimes \nu
$$

Deterministic coupling

$$
\gamma=(\operatorname{Id} \times T)_{\#} \mu
$$

- Generalizes permutations, bistochastic matrices, matchings
- convex, weakly compact

Transport Plans

Definition (Set of transport plans)

Positive measures on $\mathcal{X} \times \mathcal{Y}$ with specified marginals :

$$
\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y}): \operatorname{proj}_{\#}^{x} \gamma=\mu, \operatorname{proj}_{\#}^{y} \gamma=\nu\right\}
$$

Product coupling

$$
\gamma=\mu \otimes \nu
$$

- Generalizes permutations, bistochastic matrices, matchings
- convex, weakly compact

Definition

Ingredients

- Metric spaces \mathcal{X} and \mathcal{Y} (complete, separable)
- Cost function $c: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{\infty\}$ (lower bounded, Isc)
- Probability measures $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$

Definition (Optimal transport problem)

$$
C(\mu, \nu):=\min _{\gamma \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \gamma(x, y)
$$

Probabilistic view: $\min _{(X, Y)}\{\mathbb{E}[c(X, Y)]: X \sim \mu$ and $Y \sim \nu\}$

Duality

Theorem (Kantorovich duality)

$$
\begin{gather*}
\min _{\gamma \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \gamma(x, y) \\
\max _{\substack{\phi \in L^{1}(\mu) \\
\psi \in L^{1}(\nu)}}\left\{\int_{\mathcal{X}} \phi(x) d \mu(x)+\int_{\mathcal{Y}} \psi(y) d \nu(y): \phi(x)+\psi(y) \leq c(x, y)\right\} \quad \text { (Dual) }
\end{gather*}
$$

Economy: (Primal) centralized vs. (Dual) externalized planification

Duality

Theorem (Kantorovich duality)

$$
\begin{gather*}
\min _{\gamma \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \gamma(x, y) \tag{Primal}\\
\max _{\substack{\phi \in L^{1}(\mu) \\
\psi \in L^{1}(\nu)}}\left\{\int_{\mathcal{X}} \phi(x) d \mu(x)+\int_{\mathcal{Y}} \psi(y) d \nu(y): \phi(x)+\psi(y) \leq c(x, y)\right\} \tag{Dual}
\end{gather*}
$$

Economy: (Primal) centralized vs. (Dual) externalized planification

At optimality

- $\phi(x)+\psi(y)=c(x, y)$ for γ almost every (x, y)
- γ is concentrated on a "c-cyclically monotone" set

Generalizing Convex Analysis Tools (I)

Definition (Cyclical monotonicity)

$\Gamma \subset \mathcal{X} \times \mathcal{Y}$ is c-cyclical monotone iff for all $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \Gamma^{n}$

$$
\sum_{i=1}^{n} c\left(x_{i}, y_{i}\right) \leq \sum_{i=1}^{n} c\left(x_{i}, y_{\sigma(i)}\right) \text { for all permutation } \sigma
$$

Generalizing Convex Analysis Tools (I)

Definition (Cyclical monotonicity)

$\Gamma \subset \mathcal{X} \times \mathcal{Y}$ is c-cyclical monotone iff for all $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \Gamma^{n}$

$$
\sum_{i=1}^{n} c\left(x_{i}, y_{i}\right) \leq \sum_{i=1}^{n} c\left(x_{i}, y_{\sigma(i)}\right) \text { for all permutation } \sigma
$$

Generalizing Convex Analysis Tools (II)

Definition (c-conjugacy)

For $\mathcal{X}=\mathcal{Y}$ and $c: \mathcal{X}^{2} \rightarrow \mathbb{R}$ symmetric :

$$
\phi^{c}(y):=\inf _{x \in \mathcal{X}} c(x, y)-\phi(x)
$$

A function ϕ is c-concave iff there exists ψ such that $\phi=\psi^{c}$.

Generalizing Convex Analysis Tools (II)

Definition (c-conjugacy)

For $\mathcal{X}=\mathcal{Y}$ and $c: \mathcal{X}^{2} \rightarrow \mathbb{R}$ symmetric :

$$
\phi^{c}(y):=\inf _{x \in \mathcal{X}} c(x, y)-\phi(x)
$$

A function ϕ is c-concave iff there exists ψ such that $\phi=\psi^{c}$.

- on \mathbb{R}^{d}, for $c(x, y)=x \cdot y: \psi c$-concave $\Leftrightarrow \psi$ concave;
- for all $\phi, \phi^{c c c}=\phi^{c}$;
- consequence :

$$
\begin{equation*}
C(\mu, \nu)=\max _{\phi c \text {-concave }}\left\{\int_{\mathcal{X}} \phi(x) d \mu(x)+\int_{\mathcal{Y}} \phi^{c}(y) d \nu(y)\right\} \tag{Dual}
\end{equation*}
$$

Special Cases

- real line $(\mathcal{X}=\mathcal{Y}=\mathbb{R})$
- distance cost ($c=$ dist)
- quadratic cost $\left(c=\|\cdot-\cdot\|^{2}\right)$

Real Line

Theorem (Monotone Rearrangement)

If $\mu, \nu \in \mathcal{P}(\mathbb{R})$ and $c(x, y)=h(y-x)$ with h strictly convex:

- unique optimal transport plan γ^{*}
- denoting $F^{[-1]}$ the quantile functions:

$$
C(\mu, \nu)=\int_{0}^{1} h\left(F_{\mu}^{[-1]}(s)-F_{\nu}^{[-1]}(s)\right) d s
$$

"Proof". Here, c-cyclically monotone \Leftrightarrow increasing graph.

Distance Cost

If $\mathcal{X}=\mathcal{Y}$ and $c(x, y)=\operatorname{dist}(x, y)$

- ϕ c-concave $\Leftrightarrow \phi$ 1-Lipschitz \Leftrightarrow
$|\phi(x)-\phi(y)| \leq \operatorname{dist}(x, y), \forall x, y$
- $\phi^{c}(y)=\inf _{x} d(x, y)-\phi(x)=-\phi(y)$
- consequence :

$$
\begin{equation*}
C(\mu, \nu)=\max _{\phi 1-\text { Lipschitz }}\left\{\int_{\mathcal{X}} \phi(x) d(\mu-\nu)(x)\right\} \tag{Dual}
\end{equation*}
$$

Quadratic Cost

Reformulation

- $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with finite moments of order 2
- cost $c(x, y):=\frac{1}{2}\|y-x\|^{2}$
- note that $c(x, y)=\left(\|x\|^{2}+\|y\|^{2}\right) / 2-x \cdot y$, thus solve:

$$
\begin{equation*}
\max _{\gamma \in \mathcal{M}_{+}(\mathcal{X} \times \mathcal{Y})}\left\{\int_{\mathcal{X} \times \mathcal{Y}}\langle x, y\rangle d \gamma(x, y): \gamma \in \Pi(\mu, \nu)\right\} \tag{Primal}
\end{equation*}
$$

Theorem (Brenier '87)

(i) At optimality, spt $\gamma \subset \partial \phi$, where $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convexe.
(ii) If μ has a density, $T=\nabla \phi$ is the unique optimal map.
"Proof". (i) $\phi(x)+\phi^{*}(y)=x \cdot y, \gamma$-a.e (ii) $\nabla \phi$ defined \mathcal{L}-a.e.

Wasserstein distance

Definition

Let dist : $\mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a metric. The Wasserstein distance is

$$
W_{2}(\mu, \nu):=\left\{\min _{\gamma \in \mathcal{M}_{+}\left(\mathcal{X}^{2}\right)} \int_{X^{2}} \operatorname{dist}(x, y)^{2} d \gamma(x, y): \gamma \in \Pi(\mu, \nu)\right\}^{\frac{1}{2}}
$$

- W_{2} metrizes weak convergence +2 -nd order moments
- if $\left(\mathcal{X}\right.$, dist) is a geodesic space, so is $\left(\mathcal{P}(\mathcal{X}), W_{2}\right)$
- similar definition for W_{p} with $p \geq 1$

Constant speed geodesic for W_{2} on $\mathcal{P}(\mathbb{R})$

$$
((1-t) \operatorname{Id}+t T)_{\#} \mu
$$

Summing up

First Properties

- rich duality with concepts from convex analysis
- rich structure in specific cases

Properties of the distance W_{2} on \mathbb{R}^{d}

- optimal plans supported on $\partial \phi$ with $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex
- the space $\left(\mathcal{P}\left(\mathbb{R}^{d}\right), W_{2}\right)$ is a geodesic space
- some explicit cases (real line)

Outline

Main Theoretical Facts

A Glimpse of Applications

Computation and Approximation

Density Fitting

Losses between Probability Measures

Histogram and shapes processing

Color transfer

Barycenters

(Benamou et al. '15)

(Solomon et al. '15)

Histograms and shape processing

- compute barycenter $\bar{\mu}$ of a family $\left(\mu_{k}\right)_{k}$
- transport maps from $\bar{\mu}$ gives a Hilbertian parameterization
- apply your favorite data analysis method!

Three PCs from the MNIST dataset (Seguy and Cuturi, 2015)
[Refs]:
Seguy, Cuturi (2015). Principal Geodesic Analysis for Probability Measures [...].
Wang, Slepcev, Basu, Ozolek, Rohde (2012). A linear optimal transportation framework.

Machine learning

Loss for regression:

Learn predictor $f_{\theta}: \mathcal{X} \rightarrow \mathcal{Y}:=\mathcal{P}(\{1, \ldots, k\})$

$$
\min _{\theta \in \mathbb{R}^{d}} \mathbb{E}_{(X, Y)}\left[W_{2}^{2}\left(f_{\theta}(X), Y\right)\right] .
$$

(a) Flickr user tags: zoo, run, (b) Flickr user tags: travel, ar- (c) Flickr user tags: spring, race, mark; our proposals: running, chitecture, tourism; our proposals: training; our proposals: road, bike, summer, fun; baseline proposals: sky, roof, building; baseline pro- trail; baseline proposals: dog, running, country, lake. posals: art, sky, beach. surf, bike.

Predict probability over tags from an image (Frogner et al. 2015)

Data analysis

Learning from population dynamics

- Goal: given a population of undistinguishable particles μ_{t} at times $t=1,2, \ldots$, recover the motion of individual particles
- Solution: compute optimal transport maps from μ_{t} to μ_{t+1}

Dynamic of cells in "gene space" [Refs]:
Shiebinger et al. (2017). Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming.

Generative models

Loss for density fitting:
Given $\mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})$,
learn map $f_{\theta}: \mathcal{X} \rightarrow \mathcal{Y}$

$$
\min _{\theta \in \mathbb{R}^{d}} W_{2}^{2}\left(\left(f_{\theta}\right)_{\#} \mu, \nu\right)
$$

\Rightarrow more later in this talk

Generating figure from MNIST (Genevay et al. 2018)
[Refs]:
Genevay, Peyré, Cuturi (2017). Learning Generative Models with Sinkhorn Divergences.

Outline

Main Theoretical Facts
 A Glimpse of Applications

Computation and Approximation

Density Fitting

Losses between Probability Measures

Discrete Optimal Transport

Discrete Setting

- Discrete measures $\mu=\sum_{i=1}^{n} p_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{n} q_{j} \delta_{y_{i}}$.
- Cost matrix $C_{i, j}=c\left(x_{i}, y_{j}\right)$

Linear Program

$$
\min _{\gamma \in \mathcal{S}(p, q)} \sum_{i, j} C_{i, j} \gamma_{i, j}
$$

where $\mathcal{S}(p, q)=\left\{\gamma \in \mathbb{R}_{+}^{n \times m} ; p_{i}=\sum_{j} \gamma_{i, j}\right.$ and $\left.q_{j}=\sum_{i} \gamma_{i, j}\right\}$.

Discrete Optimal Transport

Discrete Setting

- Discrete measures $\mu=\sum_{i=1}^{n} p_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{n} q_{j} \delta_{y_{i}}$.
- Cost matrix $C_{i, j}=c\left(x_{i}, y_{j}\right)$

Linear Program

$$
\min _{\gamma \in \mathcal{S}(p, q)} \sum_{i, j} C_{i, j} \gamma_{i, j}
$$

where $\mathcal{S}(p, q)=\left\{\gamma \in \mathbb{R}_{+}^{n \times m} ; p_{i}=\sum_{j} \gamma_{i, j}\right.$ and $\left.q_{j}=\sum_{i} \gamma_{i, j}\right\}$.

Exact solvers

Algorithm	Setting	Complexity
Network simplex	-	$\tilde{O}\left(n^{3}\right)$
Hungarian	bistochastic	$O\left(n^{3}\right)$
Auction	$C_{i, j}$ integers	$O\left(n^{3}\right)$

Efficient methods in \mathbb{R}^{2} or \mathbb{R}^{3}

- semi-discrete solver based on Laguerre cells
- minimizing Benamou-Brenier functional (finite elements)
- resolution of Monge-Ampère equation (finite elements)

Approximate Solver

Product coupling
$0<\eta<\infty$
Optimal coupling

Approximate Solver

Product coupling

$$
0<\eta<\infty
$$

Optimal coupling

Entropic regularization

$$
\min _{\gamma \in \mathcal{S}(p, q)} \sum_{i, j} C_{i, j} \gamma_{i, j}+\eta \operatorname{KL}(\gamma, \mu \otimes \nu)
$$

where $\operatorname{KL}(a, b)=\sum_{i} a_{i} \log \left(a_{i} / b_{i}\right)$.

Sinkhorn's algorithm

Proposition (Optimality Condition)

Define the matrix $K_{i, j}=\exp \left(-\eta^{-1} \cdot C_{i, j}\right)$. There exists $a, b \in \mathbb{R}_{+}^{n}$ such that at optimality:

$$
\gamma^{*}=\operatorname{diag}(a) K \operatorname{diag}(b) \quad \Leftrightarrow \quad \gamma_{i, j}^{*}=a_{i} K_{i, j} b_{j}
$$

Sinkhorn's algorithm

Proposition (Optimality Condition)

Define the matrix $K_{i, j}=\exp \left(-\eta^{-1} \cdot C_{i, j}\right)$. There exists $a, b \in \mathbb{R}_{+}^{n}$ such that at optimality:

$$
\gamma^{*}=\operatorname{diag}(a) K \operatorname{diag}(b) \quad \Leftrightarrow \quad \gamma_{i, j}^{*}=a_{i} K_{i, j} b_{j}
$$

Sinkhorn's Algorithm

1. initialize $b=(1, \ldots, 1)$ and repeat until convergence

$$
\begin{array}{lc}
1.1 a \leftarrow p \oslash(K b) & \text { [rescale rows] } \\
1.2 b \leftarrow q \oslash\left(K^{T} a\right) & \text { [rescale columns] }
\end{array}
$$

2. return $\gamma_{i, j}^{*}=a_{i} K_{i, j} b_{j}$.

Evolution of $\left(a_{i} K_{i, j} b_{j}\right)_{i, j}$, in (Benamou et al. 2015)

Complexity Results

One iteration

- matrix/vector product in $O\left(n^{2}\right)$ (sometimes better)
- highly parallelizable on GPUs

Solving entropy-regularized OT

- linear convergence of a, b in Hilbert metric
- ϵ-accurate solution in $O\left(n^{2} \log (1 / \epsilon)\right)$
- stochastic algorithms, accelerations

Complexity Results

One iteration

- matrix/vector product in $O\left(n^{2}\right)$ (sometimes better)
- highly parallelizable on GPUs

Solving entropy-regularized OT

- linear convergence of a, b in Hilbert metric
- ϵ-accurate solution in $O\left(n^{2} \log (1 / \epsilon)\right)$
- stochastic algorithms, accelerations

Solving OT

- Sinkhorn's algorithm allows to build an ϵ-accurate feasible transport plan in $\tilde{O}\left(n^{2} / \epsilon^{2}\right)$ operations
- best bound in $\tilde{O}\left(n^{2} / \epsilon\right)$ (active research)
[Refs (see ref therein)]:
Lin, Ho, Jordan (2019). On Efficient Optimal Transport [...]
Dvurechensky, Gasnikov, Kroshnin (2018). Computational Optimal Transport [...]
Blanchet, Jambulapati, Kent, Sidford (2018). Towards Optimal Running Times for Optimal Transport

Outline

Main Theoretical Facts
A Glimpse of Applications
Computation and Approximation

Density Fitting

Losses between Probability Measures

Density Fitting

Ingredients

- a parametric family $\theta \in \mathbb{R}^{k} \rightarrow \mu_{\theta} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- a target $\nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

General problem

Chose a loss $D: \mathcal{P}\left(\mathbb{R}^{d}\right)^{2} \rightarrow[0, \infty]$ and solve

$$
\min _{\theta \in \mathbb{R}^{k}} D\left(\mu_{\theta}, \nu\right)
$$

Examples (1)

Statistical inference

- μ_{θ} is an exponential family
- ν is known through samples $\hat{\nu}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$

Choosing $D=K L$ gives the maximum likelihood estimator:

$$
\begin{aligned}
\min _{\theta \in \mathbb{R}^{k}} \mathrm{KL}\left(\nu \mid \mu_{\theta}\right) & \leadsto \min _{\theta \in \mathbb{R}^{k}} \mathbb{E}_{x \sim \nu}\left[-\log \left(\frac{\mathrm{d} \mu_{\theta}}{\mathrm{d} \mathcal{L}}(x)\right)\right] \\
& \leadsto \max _{\theta \in \mathbb{R}^{k}} \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{\mathrm{~d} \mu_{\theta}}{\mathrm{d} \mathcal{L}}\left(x_{i}\right)\right)
\end{aligned}
$$

Examples (II)

Shapes matching

- μ_{θ} is $\left(f_{\theta}\right)_{\#} \mu$ where f_{θ} is a smooth deformation of \mathbb{R}^{d} and μ a reference shape
- ν is a target shape
- goal : find a smooth deformation $f_{\theta^{*}}$ from μ to ν

Examples (III)

Generative modeling

- μ_{θ} is $\left(f_{\theta}\right)_{\#} \mu$ where f_{θ} is a neural network and μ is a simple distribution (e.g. Gaussian) on a low dimensional space
- ν is a target distribution observed through samples
- goal : generate new samples from ν using $f_{\theta}(X), X \sim \mu$

Random bedrooms (Arjovsky et al. '14)

[Refs]:

Arjovsky, Chintala, Bottou (2014). Wasserstein GAN
Genevay, Peyré, Cuturi (2017). Learning Generative Models with Sinkhorn Divergences

Properties Needed

Gradient-based minimization

Choose step-size α, start from $\theta^{(0)}$ and (ideally) define

$$
\theta^{(k+1)}=\theta^{(k)}-\alpha \nabla_{\theta}\left[D\left(\mu_{\theta^{(k)}}, \nu\right)\right] .
$$

Requires

- low computational complexity
- "informative" gradients
- low sample complexity

NB: Sample complexity

Let x_{1}, \ldots, x_{n} be i.i.d. samples from μ and y_{1}, \ldots, y_{n} be i.i.d.
samples from ν. Let $\mu_{n}=\frac{1}{n} \sum \delta_{x_{n}}$ and $\nu_{n}=\frac{1}{n} \sum \delta_{y_{n}}$. How much the estimation $D\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right)$ differs from $D(\mu, \nu)$ in terms of n ?

Outline

Main Theoretical Facts

A Glimpse of Applications

Computation and Approximation

Density Fitting

Losses between Probability Measures

Classes of losses

- φ-divergence (includes KL, Hellinger, TV,...)
- integral probability metrics (includes MMD, W_{1})
- Sinkhorn divergences
- Wasserstein loss

φ-divergences

Definition

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a convex function with $\varphi(1)=0$ and superlinear (to simplify):

$$
D_{\varphi}(\mu, \nu)= \begin{cases}\int_{\mathbb{R}^{d}} \varphi\left(\frac{\mathrm{~d} \mu}{\mathrm{~d} \nu}(x)\right) \mathrm{d} \nu(x) & \text { if } \mu \ll \nu \\ +\infty & \text { otherwise }\end{cases}
$$

- pointwise comparison of the density (no geometry)
- recovers KL when $\varphi(s)=s \log (s)$
- computational cost $O(n)$ (on a discrete space)
- estimation: depends on the class of density considered

Integral Probability Metrics

Definition

Let \mathcal{F} a subset of functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$ that contains 0 and define

$$
D_{\mathcal{F}}(\mu, \nu)=\sup _{f \in \mathcal{F}} \int_{\mathbb{R}^{d}} f(x) \mathrm{d}(\mu-\nu)(x)
$$

It \mathcal{F} is the set of 1 -Lipschitz functions then $D_{\mathcal{F}}=W_{1}$.

Integral Probability Metrics

Definition

Let \mathcal{F} a subset of functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$ that contains 0 and define

$$
D_{\mathcal{F}}(\mu, \nu)=\sup _{f \in \mathcal{F}} \int_{\mathbb{R}^{d}} f(x) \mathrm{d}(\mu-\nu)(x)
$$

It \mathcal{F} is the set of 1-Lipschitz functions then $D_{\mathcal{F}}=W_{1}$.

Maximum Mean Discrepancy

With \mathcal{F} be the 1-ball of a RKHS \mathcal{H} with positive definite kernel k,
$D_{\mathcal{F}}(\mu, \nu)=\|\mu-\nu\|_{k}^{2} \quad$ where $\quad\|\mu\|_{k}^{2}:=\iint k(x, y) \mathrm{d} \mu(x) \otimes \mathrm{d} \mu(y)$

- computational cost $O\left(n^{2}\right)$
- sample complexity : accuracy in $O(1 / n)$

Optimal Transport

We know the definition:

$$
C(\mu, \nu)=\min _{\gamma \in \Pi(\mu, \nu)} \int c \mathrm{~d} \gamma
$$

- "good" geometry
- computational cost: $O\left(n^{3}\right)$ or $O\left(n^{2} / \epsilon^{2}\right)$

Sample Complexity

- $\mid \mathbb{E}\left[W_{2}^{2}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right)-W_{2}^{2}(\mu, \nu) \mid\right]=O\left(n^{-2 / d}\right)$ for $d>4$ and $\mu=\nu$
- there exists better estimators under stronger assumptions

[^0]
Sinkhorn divergence

$$
C_{\eta}(\mu, \nu)=\min _{\gamma \in \Pi(\mu, \nu)} \int c \mathrm{~d} \gamma+\eta \operatorname{KL}(\gamma \mid \mu \otimes \nu)
$$

Definition

$$
D_{\eta}(\mu, \nu):=C_{\eta}(\mu, \nu)-\frac{1}{2} C_{\eta}(\mu, \mu)-\frac{1}{2} C_{\eta}(\nu, \nu)
$$

Properties

- converges to $C(\mu, \nu)$ as $\eta \rightarrow 0$
- converges to $\|\mu-\nu\|_{-c}^{2}$ as $\eta \rightarrow \infty$
- it is positive definite if $-c$ is a positive definite kernel

[^1]
Sinkhorn divergence (II)

Proposition (sample complexity on compacts)

$$
\mathbb{E}\left[\left|D_{\eta}(\mu, \nu)-D_{\eta}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right)\right|\right]=O\left(n^{-1 / 2}\right)
$$

Computational Properties

- computation through Sinkhorn algorithm in $O\left(n^{2} \log (1 / \epsilon)\right)$
- or, with stochastic algorithms
\leadsto SGD achieves the $O(1 / \sqrt{n})$ rate
\leadsto the "constants" deteriorate as $\eta \rightarrow 0$.
[Refs]:
Mena, Weed (2019). Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem.
Genevay, Chizat, Bach, Cuturi, Peyré (2018). Sample Complexity of Sinkhorn divergences.
Genevay, Cuturi, Peyré, Bach (2016). Stochastic Optimization for Large-scale Optimal Transport

Comparison

Loss D	computational compl.	sample compl.	geometry
φ-divergence	-	-	--
MMD	$O\left(n^{2}\right)$	$O\left(n^{-1}\right)$	-
Sinkhorn div.	$\tilde{O}\left(n^{2} \log 1 / \epsilon\right)$	$O\left(n^{-1 / 2}\right)$	+
Wasserstein	$\tilde{O}\left(n^{3}\right)$ or $\tilde{O}\left(n^{2} / \epsilon^{2}\right)$	$O\left(n^{-2 / d}\right)$	++

- (disclaimer) these quantities are not exactly comparable
- ideally, deal with computational and statistical aspects jointly
- for density fitting, study ideally the complexity of the whole scheme

Part 1: qualitative overview

- classical theory
- selection of properties and variants

Part 2: Algorithms and Approximations

- computational aspects
- entropic regularization
- statistical aspects
[Some reference textbooks:]
- Peyré, Cuturi (2018). Computational Optimal Transport
- Santambrogio (2015). Optimal Transport for Applied Mathematicians
- Villani (2008). Optimal Transport, Old and New

[^0]: [Refs]:
 Weed, Bach (2017). Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
 Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance.

[^1]: [Refs]:
 Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2018). Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
 Ramdas, Trillos, Cuturi, (2017). On Wasserstein two-sample testing and related families of nonparametric tests.

