Lecture 3: Wasserstein Space

Lénaïc Chizat

February 26, 2020

The material of today's lecture is adapted from Q. Mérigot's lecture notes and $[3,4]$.

1 Reminders

Let X, Y be compact metric spaces, $c \in \mathcal{C}(X \times Y)$ the cost function and $(\mu, \nu) \in$ $\mathcal{P}(X) \times \mathcal{P}(Y)$ the marginals. In previous lectures, we have seen that the optimal transport problem can be formulated as an optimization over the space of transport plans $\Pi(\mu, \nu)$ - the primal or Kantorovich problem - and as an optimization over potential functions $\{(\varphi, \psi) \in \mathcal{C}(X) \times \mathcal{C}(Y) \mid \varphi \oplus \psi \leqslant c\}$ - the dual problem. We recall the following results:

- minimizer/maximizers exist for both problems and, for the dual, can be chosen as $\left(\varphi, \varphi^{c}\right)$ with φc-concave.
- at optimality, it holds $\varphi(x)+\psi(y)=c(x, y)$ for γ-almost every (x, y)
- we have the following special cases:
- for $X=Y \subset \mathbb{R}$ and $c(x, y)=h(y-x)$ with h strictly convex, the optimal transport plan is the (unique) monotone plan, which can be characterized with the quantile functions of μ and ν.
- for $X=Y$ and $c(x, y)=\operatorname{dist}(x, y)$, we have the Kantorovich-Rubinstein formula

$$
\mathcal{T}_{c}(\mu, \nu)=\sup _{\varphi 1-\operatorname{Lip}} \int \varphi \mathrm{d}(\mu-\nu) .
$$

- for $X=Y \subset \mathbb{R}^{d}$ and $c(x, y)=\frac{1}{2}|y-x|^{2}$, and when μ is absolutely continuous, there exists a unique optimal transport plan. It is of the form $\gamma=(\mathrm{id}, \nabla \tilde{\varphi})_{\#} \mu$ for some $\tilde{\varphi} \in \mathcal{C}\left(\mathbb{R}^{d}\right)$ convex.

2 Wasserstein space

2.1 Definition and elementary properties

Definition 2.1 (Wasserstein space). Let (X, dist) be a compact metric space. For $p \geqslant 1$, we denote by $\mathcal{P}_{p}(X)$ the set of probability measures on X endowed with the p-Wasserstein distance, defined as

$$
W_{p}(\mu, \nu):=\left(\min _{\gamma \in \Pi(\mu, \nu)} \int \operatorname{dist}(x, y)^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}=\mathcal{T}_{\text {dist }^{p}}(\mu, \nu)^{\frac{1}{p}}
$$

This distance is a natural way to build a distance on $\mathcal{P}(X)$ from a distance on X. in particular, the map $\delta: X \rightarrow \mathcal{P}_{p}(X)$ mapping a point $x \in X$ to the Dirac mass δ_{x} is an isometry.

Proposition 2.2. W_{p} satisfies the axioms of a distance on $\mathcal{P}_{p}(x)$.
Proof. The symmetry of the Wasserstein distance is obvious. Moreover, $W_{p}(\mu, \nu)=0$ implies that there exists $\gamma \in \Pi(\mu, \nu)$ such that $\int \operatorname{dist}^{p} \mathrm{~d} \gamma=0$. This implies that γ is concentrated on the diagonal, so that $\gamma=(\mathrm{id}, \mathrm{id})_{\#} \mu$ is induced by the identity map. In other words, $\nu=\operatorname{id}_{\#} \mu=\mu$.

To prove the triangle inequality we will use the gluing lemma below (Lemma 2.3) with $N=3$. Let $\mu_{i} \in \mathcal{P}_{p}(X)$ for $i \in\{1,2,3\}$ and let $\gamma_{1} \in \Pi\left(\mu_{1}, \mu_{2}\right)$ and $\gamma_{2} \in \Pi\left(\mu_{2}, \mu_{3}\right)$ be optimal in the definition of W_{p}. Then, there exists $\sigma \in \mathcal{P}\left(X^{3}\right)$ such that $\left(\pi_{i, i+1}\right)_{\#} \sigma=\gamma_{i}$ for $i \in\{1,2\}$. A fortiori one has $\left(\pi_{1}\right)_{\#} \sigma=\mu_{1}$ and $\left(\pi_{3}\right)_{\#} \sigma=\mu_{3}$, so that $\left(\pi_{13}\right)_{\#} \sigma \in \Pi\left(\mu_{1}, \mu_{3}\right)$. In particular,

$$
\begin{aligned}
W_{p}\left(\mu_{1}, \mu_{3}\right) & \leqslant\left(\int_{X^{2}} \operatorname{dist}(x, y)^{p} \mathrm{~d}\left(\pi_{1,3}\right)_{\#} \sigma(x, y)\right)^{1 / p} \\
& =\left(\int_{X^{3}} \operatorname{dist}\left(x_{1}, x_{3}\right)^{p} \mathrm{~d} \sigma\left(x_{1}, x_{2}, x_{3}\right)\right)^{1 / p} \\
& \leqslant\left(\int_{X^{3}}\left(\operatorname{dist}\left(x_{1}, x_{2}\right)+\operatorname{dist}\left(x_{2}, x_{3}\right)\right)^{p} \mathrm{~d} \sigma\left(x_{1}, x_{2}, x_{3}\right)\right)^{1 / p} \\
& \leqslant\left(\int_{X^{3}} \operatorname{dist}\left(x_{1}, x_{2}\right)^{p} \mathrm{~d} \sigma\left(x_{1}, x_{2}, x_{3}\right)\right)^{1 / p}+\left(\int_{X^{3}} \operatorname{dist}\left(x_{2}, x_{3}\right)^{p} \mathrm{~d} \sigma\left(x_{1}, x_{2}, x_{3}\right)\right)^{1 / p} \\
& =W_{p}\left(\mu_{1}, \mu_{2}\right)+W_{p}\left(\mu_{2}, \mu_{3}\right)
\end{aligned}
$$

where we used the Minkowski inequality in $L^{p}(\sigma)$ to get the second inequality, and the property $\left(\pi_{i, i+1}\right)_{\#} \sigma=\gamma_{i}$ to get the last equality.

Lemma 2.3 (Gluing). Let X_{1}, \ldots, X_{N} be complete and separable metric spaces, and for any $1 \leqslant i \leqslant N-1$ consider a transport plan $\gamma_{i} \in \Pi\left(\mu_{i}, \mu_{i+1}\right)$. Then, there exists $\gamma \in$ $\mathcal{P}\left(X_{1}, \ldots, X_{N}\right)$ such that for all $i \in\{1, \ldots, N-1\},\left(\pi_{i, i+1}\right)_{\#} \gamma=\gamma_{i}$, where $\pi_{i, i+1}: X_{1} \times$ $\cdots \times X_{N} \rightarrow X_{i} \times X_{i+1}$ is the projection.
Proof. See Lemma 5.3.2 and Remark 5.3.3 in [1].
Exercise 2.4. Prove the triangle inequality assuming the existence of optimal transport maps between μ_{1}, μ_{2} and μ_{2}, μ_{3}.

Remark 2.5 (Non-compact case). As usual, the compactness assumption is only here for clarity of presentation. In general, when X is a complete and separable metric space, the space $\mathcal{P}_{p}(X)$ is defined as the set of probability measures such that for some (and thus any) $x_{0} \in X$ it holds

$$
\int \operatorname{dist}\left(x_{0}, y\right)^{p} \mathrm{~d} \mu(y)<\infty
$$

It can be shown that this set endowed with the distance W_{p} is also a complete and separable metric space. Exercice: show that the Wasserstein distance W_{p} is finite on this set.

2.2 Comparisons

Comparison between Wasserstein distances Note that, due to Jensen's inequality, since all $\gamma \in \Pi(\mu, \nu)$ are probability measures, for $p \leqslant q$ we have

$$
\left(\int \operatorname{dist}(x, y)^{p} \mathrm{~d} \gamma\right)^{\frac{1}{p}} \leqslant\left(\int \operatorname{dist}(x, y)^{q} \mathrm{~d} \gamma\right)^{\frac{1}{q}}
$$

which implies $W_{p}(\mu, \nu) \leqslant W_{q}(\mu, \nu)$. In particular, $W_{1}(\mu, \nu) \leqslant W_{p}(\mu, \nu)$ for every $p \geqslant 1$. On the other hand, for compact (and thus bounded) X, an opposite inequality also holds, since

$$
\left(\int \operatorname{dist}(x, y)^{p} \mathrm{~d} \gamma\right)^{\frac{1}{p}} \leqslant \operatorname{diam}(X)^{\frac{p-1}{p}}\left(\int \operatorname{dist}(x, y) \mathrm{d} \gamma\right)^{\frac{1}{p}}
$$

This implies that for all $p \geqslant 1$,

$$
W_{1}(\mu, \nu) \leqslant W_{p}(\mu, \nu) \leqslant \operatorname{diam}(X)^{\frac{p-1}{p}} W_{1}(\mu, \nu)^{\frac{1}{p}}
$$

2.3 Topological properties

Theorem 2.6. Assume that X is compact. For $p \in\left[1,+\infty\left[\right.\right.$, we have $\mu_{n} \rightharpoonup \mu$ if and only if $W_{p}\left(\mu_{n}, \mu\right) \rightarrow 0$.

Proof. We only need to prove the result for W_{1} thanks to the comparison inequalities between W_{1} and W_{p} in previous section. Let us start from a sequence μ_{n} such that $W_{1}\left(\mu_{n}, \mu\right) \rightarrow 0$. Thanks to the duality formula, for every $\varphi \in \operatorname{Lip}_{1}(X)$, we have $\int \varphi\left(\mu_{n}-\right.$ $\mu) \rightarrow 0$. By linearity, the same is true for any Lipschitz function. By density, this holds for any function in $\mathcal{C}(X)$. This shows that convergence in W_{1} implies weak convergence.

To prove the opposite implication, let us first fix a subsequence $\mu_{n_{k}}$ that satisfies $\lim _{k} W_{1}\left(\mu_{n_{k}}, \mu\right)=\limsup \operatorname{su}_{n} W_{1}\left(\mu_{n}, \mu\right)$. For every k, pick a function $\varphi_{n_{k}} \in \operatorname{Lip}_{1}(X)$ such that $\int \varphi_{n_{k}}\left(\mu_{n_{k}}-\mu\right)=W_{1}\left(\mu_{n_{k}}, \mu\right)$. Up to adding a constant, which does not affect the integral, we can assume that the $\varphi_{n_{k}}$ all vanish at the same point, and they are hence uniformly bounded and equi-continuous. By Ascoli-Arzelà theorem, we can extract a sub-sequence uniformly converging to a certain $\varphi \in \operatorname{Lip}_{1}(X)$. By replacing the original subsequence with this new one, we have now

$$
W_{1}\left(\mu_{n_{k}}, \mu\right)=\int \varphi_{n_{k}} \mathrm{~d}\left(\mu_{n_{k}}-\mu\right) \rightarrow \int \varphi \mathrm{d}(\mu-\mu)=0
$$

where the convergence of the integral is justified by the weak convergence $\mu_{n_{k}} \rightharpoonup \mu$ together with the strong convergence in $\mathcal{C}(X) \varphi_{n_{k}} \rightarrow \varphi$. This shows that $\lim \sup _{n} W_{1}\left(\mu_{n}, \mu\right) \leqslant 0$ and concludes the proof.

Remark 2.7. In the non-compact case, it can be shown that convergence in $\mathcal{P}_{p}(X)$ is equivalent to tight convergence (in duality with continuous and bounded functions) and convergence of the p-th order moments i.e. for all $x_{0} \in X$,

$$
\int \operatorname{dist}\left(x_{0}, y\right)^{p} \mathrm{~d} \mu_{n}(y) \rightarrow \int \operatorname{dist}\left(x_{0}, y\right)^{p} \mathrm{~d} \mu(y)
$$

3 Geodesics in Wasserstein space

Definition 3.1. Let (X, dist) be a metric space. A constant speed geodesic between two points $x_{0}, x_{1} \in X$ is a continuous curve $x:[0,1] \rightarrow X$ such that for every $s, t \in[0,1]$, $\operatorname{dist}\left(x_{s}, x_{t}\right)=|s-t| \operatorname{dist}\left(x_{0}, x_{1}\right)$.

Proposition 3.2. Let $\mu_{0}, \mu_{1} \in \mathcal{P}_{p}(X)$ with $X \subset \mathbb{R}^{d}$ compact and convex. Let $\gamma \in$ $\Pi\left(\mu_{0}, \mu_{1}\right)$ be an optimal transport plan. Define

$$
\mu_{t}:=\left(\pi_{t}\right)_{\#} \gamma \text { where } \pi_{t}(x, y)=(1-t) x+t y
$$

Then, the curve μ_{t} is a constant speed geodesic between μ_{0} and μ_{1}.

Example 3.3. If there exists an optimal transport map T between μ_{0} and μ_{1}, then the geodesic defined above is $\mu_{t}=((1-t) \operatorname{id}+t T)_{\#} \mu_{0}$.

Remark 3.4. In fact, it can be shown that any geodesic between μ_{0} and μ_{1} can be constructed as in Proposition 3.2.

Proof. First note that if $0 \leqslant s \leqslant t \leqslant 1$,

$$
W_{p}\left(\mu_{0}, \mu_{1}\right) \leqslant W_{p}\left(\mu_{0}, \mu_{s}\right)+W_{p}\left(\mu_{s}, \mu_{t}\right)+W_{p}\left(\mu_{t}, \mu_{1}\right)
$$

so that it suffices to prove the inequality $W_{p}\left(\mu_{s}, \mu_{t}\right) \leqslant|t-s| W_{p}\left(\mu_{0}, \mu_{1}\right)$ for all $0 \leqslant s \leqslant$ $t \leqslant 1$ to get equality. The inequality is easily checked by building an explicit transport plan using an optimal transport plan γ. Take $\gamma_{s t}:=\left(\pi_{s}, \pi_{t}\right)_{\# \gamma} \in \Pi\left(\mu_{s}, \mu_{t}\right)$, so that

$$
\begin{aligned}
W_{p}\left(\mu_{s}, \mu_{t}\right)^{p} & \leqslant \int\|x-y\|^{p} \mathrm{~d} \gamma_{s t}(x, y)=\int\left\|\pi_{s}(x, y)-\pi_{t}(x, y)\right\|^{p} \mathrm{~d} \gamma(x, y) \\
& =\int\|(1-s) x+s y-((1-t) x+t y)\|^{p} \mathrm{~d} \gamma(x, y) \\
& =\int\|(t-s)(x-y)\|^{p} \mathrm{~d} \gamma(x, y)=(t-s)^{p} W_{p}(\mu, \nu)^{p}
\end{aligned}
$$

Corollary 3.5. The space $\left(\mathcal{P}_{p}(X), W_{p}\right)$ with X compact and convex is a geodesic space, meaning that any $\mu_{0}, \mu_{1} \in \mathcal{P}_{p}(X)$ can be joined by (at least one) constant speed geodesic.

4 Differentiability of the Wasserstein distance

In this section, we will compute the differential of the Wasserstein distance under additive perturbations.

Theorem 4.1. Let $\sigma, \rho_{0}, \rho_{1} \in \mathcal{P}(X)$. Assume that there exists unique Kantorovich potentials $\left(\varphi_{0}, \psi_{0}\right)$ between σ and ρ_{0} which are c-conjugate to each other and satisfy $\varphi_{0}\left(x_{0}\right)=0$ for some $x_{0} \in X$. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{T}_{c}\left(\sigma, \rho_{0}+\left.t\left(\rho_{1}-\rho_{0}\right)\right|_{t=0}=\int \psi_{0} \mathrm{~d}\left(\rho_{1}-\rho_{0}\right)\right.
$$

Proof. Denote $\rho_{t}=(1-t) \rho_{0}+t \rho_{1}=\rho_{0}+t\left(\rho_{1}-\rho_{0}\right)$. By Kantorovich duality, we have

$$
\mathcal{T}_{c}\left(\sigma, \rho_{t}\right) \geqslant \int \varphi_{0} \mathrm{~d} \sigma+\int \psi_{0} \mathrm{~d} \rho_{t}
$$

This immediately gives

$$
\frac{1}{t}\left(\mathcal{T}_{c}\left(\sigma, \rho_{t}\right)-\mathcal{T}_{c}\left(\sigma, \rho_{0}\right)\right) \geqslant \int \psi_{0} \mathrm{~d}\left(\rho_{1}-\rho_{0}\right)
$$

To show the converse inequality, we let $\left(\varphi_{t}, \psi_{t}\right)$ be c-conjugate Kantorovich potentials between σ and ρ_{t} satisfying $\psi_{t}\left(x_{0}\right)=0$, giving

$$
\frac{1}{t}\left(\mathcal{T}_{c}\left(\sigma, \rho_{0}\right)-\mathcal{T}_{c}\left(\sigma, \rho_{t}\right)\right) \geqslant \int \psi_{t} \mathrm{~d}\left(\rho_{1}-\rho_{0}\right)
$$

Moreover, by uniqueness of $\left(\varphi_{0}, \psi_{0}\right)$, we get that φ_{t}, ψ_{t} converges uniformly to $\left(\varphi_{0}, \psi_{0}\right)$ as $t \rightarrow 0$, thus concluding the proof.

The assumption on the uniqueness of the potentials can be guaranteed a priori in the following setting, which corresponds to the distance W_{2} (one could prove it for W_{p}, with $p>1$ similarly).

Proposition 4.2 (Uniqueness of potentials). If $X \subseteq \mathbb{R}^{d}$ is the closure of a bounded and connected open set, $x_{0} \in X,(\sigma, \rho) \in \mathcal{P}(X)$ satisfies

$$
\operatorname{spt}(\rho)=X \text { or } \operatorname{spt}(\sigma)=X
$$

then, there exists a unique pair of Kantorovich potentials (φ, ψ) optimal for $c(x, y)=$ $\frac{1}{2}\|x-y\|^{2}$, c-conjugate to each other, and satisfying $\varphi\left(x_{0}\right)=0$.

Proof. Assume that $\operatorname{spt}(\sigma)=X$. Since c is Lipschitz on the bounded set X, φ, ψ are Lipschitz and therefore differentiable almost everywhere. Take $\left(x_{0}, y_{0}\right) \in \operatorname{spt}(\gamma)$ where $\gamma \in \Pi(\sigma, \rho)$ is the optimal transport plan, such that φ is differentiable at $x_{0} \in \dot{X}$. As we have already shown, for any optimal pair (φ, ψ) we necessarily have

$$
y_{0}=x_{0}-\nabla \varphi\left(x_{0}\right)
$$

so that if $\left(\varphi^{\prime}, \psi^{\prime}\right)$ is another optimal pair, we should have $\nabla \varphi=\nabla \varphi^{\prime} \sigma$-a.e. Since $\operatorname{spt}(\sigma)=$ X and since X is the closure of a connected open set, this implies $\varphi=\varphi^{\prime}+C$ for a constant C as desired, and $C=0$ since $\varphi\left(x_{0}\right)=\varphi^{\prime}\left(x_{0}\right)$. Moreover, $\psi^{\prime}=\varphi^{\prime c}=\varphi^{c}=\psi$, allowing to deal with the case where $\operatorname{spt}(\rho)=X$ by symmetry.

5 Dynamic formulation of optimal transport

We conclude this lecture with a discussion around a fluid dynamic interpretation of optimal transport. The material in this section is only treated at an informal level and we refer to [3] for a rigorous treatment.

When $X \subset \mathbb{R}^{d}$, we can interpret the marginals $\mu, \nu \in \mathcal{P}(X)$ as distributions of particles at times $t=0$ and $t=1$ respectively. Assume that for each time t, there is a velocity field $v_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which moves particles around. The relation between the velocity field and the distribution is given by the continuity equation (satisfied in the sense of distributions)

$$
\partial_{t} \rho_{t}+\nabla \cdot\left(\rho_{t} v_{t}\right)=0
$$

When v_{t} is regular enough (e.g. Lipschitz continuous in x, uniformly in t), then we can define its flow $T:[0,1] \times X \rightarrow \mathbb{R}^{d}$ which is such that $T_{t}(x)$ gives the position at time t of a particle which is at x at time 0 . It solves $T_{0}(x)=x$ and

$$
\frac{d}{d t} T_{t}(x)=v_{t}\left(T_{t}(x)\right)
$$

Let us denote $\mathrm{CE}(\mu, \nu)$ the set of solutions (ρ, v) to the continuity equation such that $t \mapsto \rho_{t}$ is weakly continuous and satisfies $\rho_{0}=\mu$ and $\rho_{1}=\nu$. Consider also the integrated (generalized) "kinetic energy" functional

$$
A_{p}(\rho, v):=\int_{0}^{1} \int_{X}\left\|v_{t}(x)\right\|^{p} \mathrm{~d} \mu_{t}(x) \mathrm{d} t
$$

By minimizing this functional over all interpolations between μ and ν, we recover the optimal transport with cost $\|y-x\|^{p}$. This is called the Benamou-Brenier formulation.

Theorem 5.1 (Dynamic formulation). Let $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ be compactly supported. For $p \geqslant 1$ it holds

$$
W_{p}^{p}(\mu, \nu)=\inf \left\{A_{p}(\rho, v) \mid(\rho, v) \in \operatorname{CE}(\mu, \nu)\right\} .
$$

Let us give some informal arguments to understand this result.

- Let us first argue that for $(\rho, v) \in \mathrm{CE}(\mu, \nu)$ it holds $A_{p}(\rho, v) \geqslant W_{p}^{p}(\mu, \nu)$. Assume (ρ, v) is regular enough and consider the flow $T_{t}(x)$, that satisfies $\rho_{t}=\left(T_{t}\right)_{\#} \rho_{0}$. It holds

$$
\begin{aligned}
A(\rho, v) & =\int_{0}^{1} \int_{X}\left\|v_{t}\left(T_{t}(x)\right)\right\|^{p} \mathrm{~d} \rho_{0}(x) \mathrm{d} t \\
& =\int_{X}\left(\int_{0}^{1}\left\|\frac{d}{d t} T_{t}(x)\right\|^{p} \mathrm{~d} t\right) \mathrm{d} \rho_{0}(x) \\
& \geqslant \int_{X}\left\|T_{1}(x)-T_{0}(x)\right\|^{p} \mathrm{~d} \rho_{0}(x)
\end{aligned}
$$

by Jensen's inequality. Since $\left(T_{1}\right)_{\#} \rho_{0}=\rho_{1}=\nu$ and $\rho_{0}=\mu$, the last quantity is larger than $W_{p}^{p}(\mu, \nu)$.

- Let us build an admissible $(\rho, v) \in \mathrm{CE}(\mu, \nu)$ such that $A(\rho, v)=W_{p}^{p}(\mu, \nu)$ using the geodesic between μ and ν. Assume that there exists an optimal transport map T between μ and ν, and set $\rho_{t}=\left(T_{t}\right)_{\#} \mu$ with $T_{t}(x)=(1-t) x+t T(x)$. Now define the velocity field

$$
v_{t}=\left(\frac{d}{d t} T_{t}\right) \circ T_{t}^{-1}=(T-\mathrm{id}) \circ T_{t}^{-1}
$$

which, by construction, is such that $\left(\rho_{t}, v_{t}\right)$ satisfies the continuity equation in the weak sense. We have the desired equality:

$$
A(\rho, v)=\int\left\|v_{t}(x)\right\|^{p} \mathrm{~d} \rho_{t}(x)=\int|T(x)-x|^{p} \mathrm{~d} \rho_{0}(x)=W_{p}^{p}(\mu, \nu) .
$$

Riemannian interpretation. In the case $p=2$, we can understand (at least at the formal level) the Benamou-Brenier formula as a Riemannian formulation for W_{2} (this point of view is due to Otto). In this interpretation, the tangent space at $\rho \in \mathcal{P}_{2}(X)$ are measures of the form $\delta \rho=-\nabla \cdot(v \rho)$ with a velocity field $v \in L^{2}\left(\rho, \mathbb{R}^{d}\right)$ and the metric is given by

$$
\|\delta \rho\|_{\rho}^{2}=\inf _{v \in L^{2}\left(\rho, \mathbb{R}^{d}\right)}\left\{\int\|v(x)\|_{2}^{2} \mathrm{~d} \rho(x) \mid \delta \rho=-\nabla \cdot(v \rho)\right\} .
$$

References

[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows: in metric spaces and in the space of probability measures, Springer Science \& Business Media, 2008.
[2] Haïm Brezis, Analyse fonctionnelle, Masson, Halsted Press, 1983.
[3] Filippo Santambrogio, Optimal transport for applied mathematicians, Springer, 2015.
[4] Cédric Villani, Optimal transport: old and new, vol. 338, Springer Science \& Business Media, 2008.

