
Lecture 3: Wasserstein Space

Lénaïc Chizat

February 26, 2020

The material of today’s lecture is adapted from Q. Mérigot’s lecture notes and [3, 4].

1 Reminders

Let X,Y be compact metric spaces, c ∈ C(X × Y ) the cost function and (µ, ν) ∈
P(X)×P(Y ) the marginals. In previous lectures, we have seen that the optimal transport
problem can be formulated as an optimization over the space of transport plans Π(µ, ν)
— the primal or Kantorovich problem — and as an optimization over potential functions
{(ϕ,ψ) ∈ C(X)× C(Y ) | ϕ⊕ ψ 6 c} — the dual problem. We recall the following results:

• minimizer/maximizers exist for both problems and, for the dual, can be chosen as
(ϕ,ϕc) with ϕ c-concave.

• at optimality, it holds ϕ(x) + ψ(y) = c(x, y) for γ-almost every (x, y)

• we have the following special cases:

– for X = Y ⊂ R and c(x, y) = h(y − x) with h strictly convex, the optimal
transport plan is the (unique) monotone plan, which can be characterized with
the quantile functions of µ and ν.

– for X = Y and c(x, y) = dist(x, y), we have the Kantorovich-Rubinstein for-
mula

Tc(µ, ν) = sup
ϕ 1−Lip

∫
ϕd(µ− ν).

– for X = Y ⊂ Rd and c(x, y) = 1
2 |y − x|

2, and when µ is absolutely continuous,
there exists a unique optimal transport plan. It is of the form γ = (id,∇ϕ̃)#µ
for some ϕ̃ ∈ C(Rd) convex.

2 Wasserstein space

2.1 Definition and elementary properties

Definition 2.1 (Wasserstein space). Let (X,dist) be a compact metric space. For p > 1,
we denote by Pp(X) the set of probability measures on X endowed with the p-Wasserstein
distance, defined as

Wp(µ, ν) :=

(
min

γ∈Π(µ,ν)

∫
dist(x, y)pdγ(x, y)

)1/p

= Tdistp(µ, ν)
1
p .

This distance is a natural way to build a distance on P(X) from a distance on X. in
particular, the map δ : X → Pp(X) mapping a point x ∈ X to the Dirac mass δx is an
isometry.
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Proposition 2.2. Wp satisfies the axioms of a distance on Pp(x).

Proof. The symmetry of the Wasserstein distance is obvious. Moreover, Wp(µ, ν) = 0
implies that there exists γ ∈ Π(µ, ν) such that

∫
distpdγ = 0. This implies that γ is

concentrated on the diagonal, so that γ = (id, id)#µ is induced by the identity map. In
other words, ν = id#µ = µ.

To prove the triangle inequality we will use the gluing lemma below (Lemma 2.3) with
N = 3. Let µi ∈ Pp(X) for i ∈ {1, 2, 3} and let γ1 ∈ Π(µ1, µ2) and γ2 ∈ Π(µ2, µ3) be
optimal in the definition ofWp. Then, there exists σ ∈ P(X3) such that (πi,i+1)#σ = γi for
i ∈ {1, 2}. A fortiori one has (π1)#σ = µ1 and (π3)#σ = µ3, so that (π13)#σ ∈ Π(µ1, µ3).
In particular,

Wp(µ1, µ3) 6

(∫
X2

dist(x, y)pd(π1,3)#σ(x, y)

)1/p

=

(∫
X3

dist(x1, x3)pdσ(x1, x2, x3)

)1/p

6

(∫
X3

(dist(x1, x2) + dist(x2, x3))pdσ(x1, x2, x3)

)1/p

6

(∫
X3

dist(x1, x2)pdσ(x1, x2, x3)

)1/p

+

(∫
X3

dist(x2, x3)pdσ(x1, x2, x3)

)1/p

= Wp(µ1, µ2) +Wp(µ2, µ3),

where we used the Minkowski inequality in Lp(σ) to get the second inequality, and the
property (πi,i+1)#σ = γi to get the last equality.

Lemma 2.3 (Gluing). Let X1, . . . , XN be complete and separable metric spaces, and for
any 1 6 i 6 N − 1 consider a transport plan γi ∈ Π(µi, µi+1). Then, there exists γ ∈
P(X1, . . . , XN ) such that for all i ∈ {1, . . . , N − 1}, (πi,i+1)#γ = γi, where πi,i+1 : X1 ×
· · · ×XN → Xi ×Xi+1 is the projection.

Proof. See Lemma 5.3.2 and Remark 5.3.3 in [1].

Exercise 2.4. Prove the triangle inequality assuming the existence of optimal transport
maps between µ1, µ2 and µ2, µ3.

Remark 2.5 (Non-compact case). As usual, the compactness assumption is only here for
clarity of presentation. In general, when X is a complete and separable metric space, the
space Pp(X) is defined as the set of probability measures such that for some (and thus
any) x0 ∈ X it holds ∫

dist(x0, y)pdµ(y) <∞.

It can be shown that this set endowed with the distanceWp is also a complete and separable
metric space. Exercice: show that the Wasserstein distance Wp is finite on this set.

2.2 Comparisons

Comparison between Wasserstein distances Note that, due to Jensen’s inequality,
since all γ ∈ Π(µ, ν) are probability measures, for p 6 q we have(∫

dist(x, y)pdγ

) 1
p

6

(∫
dist(x, y)qdγ

) 1
q

,
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which implies Wp(µ, ν) 6 Wq(µ, ν). In particular, W1(µ, ν) 6 Wp(µ, ν) for every p > 1.
On the other hand, for compact (and thus bounded) X, an opposite inequality also holds,
since (∫

dist(x, y)pdγ
) 1

p
6 diam(X)

p−1
p

(∫
dist(x, y)dγ

) 1
p
.

This implies that for all p > 1,

W1(µ, ν) 6Wp(µ, ν) 6 diam(X)
p−1
p W1(µ, ν)

1
p .

2.3 Topological properties

Theorem 2.6. Assume that X is compact. For p ∈ [1,+∞[, we have µn ⇀ µ if and only
if Wp(µn, µ)→ 0.

Proof. We only need to prove the result for W1 thanks to the comparison inequalities
between W1 and Wp in previous section. Let us start from a sequence µn such that
W1(µn, µ)→ 0. Thanks to the duality formula, for every ϕ ∈ Lip1(X), we have

∫
ϕ(.µn −

µ) → 0. By linearity, the same is true for any Lipschitz function. By density, this holds
for any function in C(X). This shows that convergence in W1 implies weak convergence.

To prove the opposite implication, let us first fix a subsequence µnk
that satisfies

limkW1(µnk
, µ) = lim supnW1(µn, µ). For every k, pick a function ϕnk

∈ Lip1(X) such
that

∫
ϕnk

(.µnk
− µ) = W1(µnk

, µ). Up to adding a constant, which does not affect the
integral, we can assume that the ϕnk

all vanish at the same point, and they are hence
uniformly bounded and equi-continuous. By Ascoli-Arzelà theorem, we can extract a
sub-sequence uniformly converging to a certain ϕ ∈ Lip1(X). By replacing the original
subsequence with this new one, we have now

W1(µnk
, µ) =

∫
ϕnk

d(µnk
− µ)→

∫
ϕd(µ− µ) = 0

where the convergence of the integral is justified by the weak convergence µnk
⇀ µ together

with the strong convergence in C(X) ϕnk
→ ϕ. This shows that lim supnW1(µn, µ) 6 0

and concludes the proof.

Remark 2.7. In the non-compact case, it can be shown that convergence in Pp(X) is
equivalent to tight convergence (in duality with continuous and bounded functions) and
convergence of the p-th order moments i.e. for all x0 ∈ X,∫

dist(x0, y)pdµn(y)→
∫

dist(x0, y)pdµ(y).

3 Geodesics in Wasserstein space

Definition 3.1. Let (X,dist) be a metric space. A constant speed geodesic between two
points x0, x1 ∈ X is a continuous curve x : [0, 1] → X such that for every s, t ∈ [0, 1],
dist(xs, xt) = |s− t| dist(x0, x1).

Proposition 3.2. Let µ0, µ1 ∈ Pp(X) with X ⊂ Rd compact and convex. Let γ ∈
Π(µ0, µ1) be an optimal transport plan. Define

µt := (πt)#γ where πt(x, y) = (1− t)x+ ty.

Then, the curve µt is a constant speed geodesic between µ0 and µ1.
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Example 3.3. If there exists an optimal transport map T between µ0 and µ1, then the
geodesic defined above is µt = ((1− t)id + tT )#µ0.

Remark 3.4. In fact, it can be shown that any geodesic between µ0 and µ1 can be
constructed as in Proposition 3.2.

Proof. First note that if 0 6 s 6 t 6 1,

Wp(µ0, µ1) 6Wp(µ0, µs) +Wp(µs, µt) +Wp(µt, µ1),

so that it suffices to prove the inequality Wp(µs, µt) 6 |t− s|Wp(µ0, µ1) for all 0 6 s 6
t 6 1 to get equality. The inequality is easily checked by building an explicit transport
plan using an optimal transport plan γ. Take γst := (πs, πt)#γ ∈ Π(µs, µt), so that

Wp(µs, µt)
p 6

∫
‖x− y‖p dγst(x, y) =

∫
‖πs(x, y)− πt(x, y)‖p dγ(x, y)

=

∫
‖(1− s)x+ sy − ((1− t)x+ ty)‖p dγ(x, y)

=

∫
‖(t− s)(x− y)‖p dγ(x, y) = (t− s)pWp(µ, ν)p

Corollary 3.5. The space (Pp(X),Wp) with X compact and convex is a geodesic space,
meaning that any µ0, µ1 ∈ Pp(X) can be joined by (at least one) constant speed geodesic.

4 Differentiability of the Wasserstein distance

In this section, we will compute the differential of the Wasserstein distance under additive
perturbations.

Theorem 4.1. Let σ, ρ0, ρ1 ∈ P(X). Assume that there exists unique Kantorovich poten-
tials (ϕ0, ψ0) between σ and ρ0 which are c-conjugate to each other and satisfy ϕ0(x0) = 0
for some x0 ∈ X. Then,

d

dt
Tc(σ, ρ0 + t(ρ1 − ρ0)|t=0 =

∫
ψ0d(ρ1 − ρ0).

Proof. Denote ρt = (1− t)ρ0 + tρ1 = ρ0 + t(ρ1 − ρ0). By Kantorovich duality, we have

Tc(σ, ρt) >
∫
ϕ0dσ +

∫
ψ0dρt.

This immediately gives

1

t
(Tc(σ, ρt)− Tc(σ, ρ0)) >

∫
ψ0d(ρ1 − ρ0).

To show the converse inequality, we let (ϕt, ψt) be c-conjugate Kantorovich potentials
between σ and ρt satisfying ψt(x0) = 0, giving

1

t
(Tc(σ, ρ0)− Tc(σ, ρt)) >

∫
ψtd(ρ1 − ρ0).

Moreover, by uniqueness of (ϕ0, ψ0), we get that ϕt, ψt converges uniformly to (ϕ0, ψ0) as
t→ 0, thus concluding the proof.
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The assumption on the uniqueness of the potentials can be guaranteed a priori in the
following setting, which corresponds to the distance W2 (one could prove it for Wp, with
p > 1 similarly).

Proposition 4.2 (Uniqueness of potentials). If X ⊆ Rd is the closure of a bounded and
connected open set, x0 ∈ X, (σ, ρ) ∈ P(X) satisfies

spt(ρ) = X or spt(σ) = X,

then, there exists a unique pair of Kantorovich potentials (ϕ,ψ) optimal for c(x, y) =
1
2 ‖x− y‖

2, c-conjugate to each other, and satisfying ϕ(x0) = 0.

Proof. Assume that spt(σ) = X. Since c is Lipschitz on the bounded set X, ϕ,ψ are
Lipschitz and therefore differentiable almost everywhere. Take (x0, y0) ∈ spt(γ) where
γ ∈ Π(σ, ρ) is the optimal transport plan, such that ϕ is differentiable at x0 ∈ X̊. As we
have already shown, for any optimal pair (ϕ,ψ) we necessarily have

y0 = x0 −∇ϕ(x0),

so that if (ϕ′, ψ′) is another optimal pair, we should have ∇ϕ = ∇ϕ′ σ-a.e. Since spt(σ) =
X and since X is the closure of a connected open set, this implies ϕ = ϕ′+C for a constant
C as desired, and C = 0 since ϕ(x0) = ϕ′(x0). Moreover, ψ′ = ϕ′c = ϕc = ψ, allowing to
deal with the case where spt(ρ) = X by symmetry.

5 Dynamic formulation of optimal transport

We conclude this lecture with a discussion around a fluid dynamic interpretation of optimal
transport. The material in this section is only treated at an informal level and we refer
to [3] for a rigorous treatment.

When X ⊂ Rd, we can interpret the marginals µ, ν ∈ P(X) as distributions of particles
at times t = 0 and t = 1 respectively. Assume that for each time t, there is a velocity field
vt : Rd → Rd which moves particles around. The relation between the velocity field and
the distribution is given by the continuity equation (satisfied in the sense of distributions)

∂tρt +∇ · (ρtvt) = 0.

When vt is regular enough (e.g. Lipschitz continuous in x, uniformly in t), then we can
define its flow T : [0, 1]×X → Rd which is such that Tt(x) gives the position at time t of
a particle which is at x at time 0. It solves T0(x) = x and

d

dt
Tt(x) = vt(Tt(x)).

Let us denote CE(µ, ν) the set of solutions (ρ, v) to the continuity equation such that
t 7→ ρt is weakly continuous and satisfies ρ0 = µ and ρ1 = ν. Consider also the integrated
(generalized) “kinetic energy” functional

Ap(ρ, v) :=

∫ 1

0

∫
X
‖vt(x)‖pdµt(x)dt.

By minimizing this functional over all interpolations between µ and ν, we recover the
optimal transport with cost ‖y − x‖p. This is called the Benamou-Brenier formulation.
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Theorem 5.1 (Dynamic formulation). Let µ, ν ∈ P(Rd) be compactly supported. For
p > 1 it holds

W p
p (µ, ν) = inf

{
Ap(ρ, v) | (ρ, v) ∈ CE(µ, ν)

}
.

Let us give some informal arguments to understand this result.

• Let us first argue that for (ρ, v) ∈ CE(µ, ν) it holds Ap(ρ, v) > W p
p (µ, ν). Assume

(ρ, v) is regular enough and consider the flow Tt(x), that satisfies ρt = (Tt)#ρ0. It
holds

A(ρ, v) =

∫ 1

0

∫
X
‖vt(Tt(x))‖pdρ0(x)dt

=

∫
X

(∫ 1

0

∥∥∥ d
dt
Tt(x)

∥∥∥pdt)dρ0(x)

>
∫
X
‖T1(x)− T0(x)‖pdρ0(x)

by Jensen’s inequality. Since (T1)#ρ0 = ρ1 = ν and ρ0 = µ, the last quantity is
larger than W p

p (µ, ν).

• Let us build an admissible (ρ, v) ∈ CE(µ, ν) such that A(ρ, v) = W p
p (µ, ν) using the

geodesic between µ and ν. Assume that there exists an optimal transport map T
between µ and ν, and set ρt = (Tt)#µ with Tt(x) = (1 − t)x + tT (x). Now define
the velocity field

vt =
( d
dt
Tt

)
◦ T−1

t = (T − id) ◦ T−1
t ,

which, by construction, is such that (ρt, vt) satisfies the continuity equation in the
weak sense. We have the desired equality:

A(ρ, v) =

∫
‖vt(x)‖pdρt(x) =

∫
|T (x)− x|pdρ0(x) = W p

p (µ, ν).

Riemannian interpretation. In the case p = 2, we can understand (at least at the
formal level) the Benamou-Brenier formula as a Riemannian formulation for W2 (this
point of view is due to Otto). In this interpretation, the tangent space at ρ ∈ P2(X) are
measures of the form δρ = −∇ · (vρ) with a velocity field v ∈ L2(ρ,Rd) and the metric is
given by

‖δρ‖2ρ = inf
v∈L2(ρ,Rd)

{∫
‖v(x)‖22dρ(x) | δρ = −∇ · (vρ)

}
.
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