Theoretical aspects of neural networks optimization

Lénaïc Chizat*

July 24th 2019 - IFCAM summer school IISc - Bangalore

*CNRS and Université Paris-Sud
Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers
Parametric supervised machine learning

- given training data \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, \ i \in \{1, \ldots, n\}\)
- build a function \(h\) such that \(h(x) \approx y\) for unseen data \((x, y)\)
- prediction of the form \(h(w, x) \in \mathbb{R}\) with parameters \(w \in \mathbb{R}^p\)

Examples

- computer vision
- advertisement
- audio processing, natural language processing, medical imaging ...
What are the types of models?

Linear (in the largest sense)

Linear regression, ad-hoc features, random features, kernel methods

$$h(w, x) = w \cdot \phi(x)$$

⇝ most of statistics and optimization theory
What are the types of models?

Linear (in the largest sense)

Linear regression, ad-hoc features, random features, kernel methods

\[h(w, x) = w \cdot \phi(x) \]

→ most of statistics and optimization theory

Non-linear

\[h(w, x) \] given by a differentiable program, such as a computational graph (including neural networks)

→ when last operation is linear: interpretation as learnt features
Parametric supervised machine learning

- given training data \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, i \in \{1, \ldots, n\}\)
- build a function \(h\) such that \(h(x) \approx y\) for unseen data \((x, y)\)
- prediction of the form \(h(w, x) \in \mathbb{R}\) with parameters \(w \in \mathbb{R}^p\)

The goal is to predict well, i.e. minimizing the **population loss**:

\[
\min_{w \in \mathbb{R}^p} R(h(w)) := \mathbb{E}_{(x, y)} \text{loss}(y, f(w, x))
\]
Parametric supervised machine learning

- given training data \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, i \in \{1, \ldots, n\}\)
- build a function \(h\) such that \(h(x) \approx y\) for unseen data \((x, y)\)
- prediction of the form \(h(w, x) \in \mathbb{R}\) with parameters \(w \in \mathbb{R}^p\)

The goal is to predict well, i.e. minimizing the **population loss**:

\[
\min_{w \in \mathbb{R}^p} R(h(w)) := \mathbb{E}_{(x, y)} \text{loss}(y, f(w, x))
\]

Empirical risk minimization

\[
\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \text{loss}(y_i, h(w, x_i)) + \lambda \Omega(w)
\]

- Data fitting term \(\hat{R}(h)\)
- Regularizer
Losses

Regression ($y \in \mathbb{R}$)

Square loss

$$\text{loss}(y, \bar{y}) = \frac{1}{2} (y - \bar{y})^2$$
Losses

Regression ($y \in \mathbb{R}$)

Square loss

$$\text{loss}(y, \bar{y}) = \frac{1}{2} (y - \bar{y})^2$$

Classification ($y \in \{-1, 1\}$)

Logistic loss

$$\text{loss}(y, \bar{y}) = \log(1 + \exp(-y \bar{y}))$$

Hinge loss

$$\text{loss}(y, \bar{y}) = \max\{0, 1 - y \bar{y}\}$$
Convexity in supervised machine learning

Convex loss ◦ linear predictor = convex objective to minimize

Algorithms

- gradient descent
- stochastic gradient descent (finite sum, infinite sums)
- acceleration, variance reduction
Convexity in supervised machine learning

Convex loss \circ linear predictor = convex objective to minimize

Algorithms

- gradient descent
- stochastic gradient descent (finite sum, infinite sums)
- acceleration, variance reduction

Theory

- global optimization with guaranteed complexity
- matching upper and lower bounds
- useful “black-box” theory
Non-convexity

Convex loss \circ \text{ non-linear predictor} \rightsquigarrow \text{ a new world}

- local minima
- saddle points
- plateaux
Non-convexity

Convex loss \circ \text{non-linear predictor} \leadsto \text{a new world}

- local minima
- saddle points
- plateaux

Theory:

- in general, difficult problems (high dimensional exploration)
- some guarantees to escape stationary points
- need to look at the fine structure of the model
- \textit{implicit bias}: optimization and statistics intertwined
Why should we bother with non-linear models?

Empirical arguments

Optimized features beat fixed, random or hand-designed features

<table>
<thead>
<tr>
<th>Model</th>
<th>Orig. Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>pnasnet_large_tf</td>
<td>82.9 [82.5, 83.2]</td>
</tr>
<tr>
<td>nasnetlarge</td>
<td>82.5 [82.2, 82.8]</td>
</tr>
<tr>
<td>resnet152</td>
<td>78.3 [77.9, 78.7]</td>
</tr>
<tr>
<td>inception_v3_tf</td>
<td>78.0 [77.6, 78.3]</td>
</tr>
<tr>
<td>densenet161</td>
<td>77.1 [76.8, 77.5]</td>
</tr>
<tr>
<td>vgg19_bn</td>
<td>74.2 [73.8, 74.6]</td>
</tr>
<tr>
<td>alexnet</td>
<td>56.5 [56.1, 57.0]</td>
</tr>
<tr>
<td>fv_64k</td>
<td>35.1 [34.7, 35.5]</td>
</tr>
</tbody>
</table>

Test accuracy for ImageNet classification (Recht et al. 2019)
Why should we bother with non-linear models?

Empirical arguments

Optimized features beat fixed, random or hand-designed features

<table>
<thead>
<tr>
<th>Model</th>
<th>Orig. Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>pnasnet_large_tf</td>
<td>82.9 [82.5, 83.2]</td>
</tr>
<tr>
<td>nasnetlarge</td>
<td>82.5 [82.2, 82.8]</td>
</tr>
<tr>
<td>resnet152</td>
<td>78.3 [77.9, 78.7]</td>
</tr>
<tr>
<td>inception_v3_tf</td>
<td>78.0 [77.6, 78.3]</td>
</tr>
<tr>
<td>densenet161</td>
<td>77.1 [76.8, 77.5]</td>
</tr>
<tr>
<td>vgg19_bn</td>
<td>74.2 [73.8, 74.6]</td>
</tr>
<tr>
<td>alexnet</td>
<td>56.5 [56.1, 57.0]</td>
</tr>
<tr>
<td>fv_64k</td>
<td>35.1 [34.7, 35.5]</td>
</tr>
</tbody>
</table>

Test accuracy for ImageNet classification (Recht et al. 2019)

Theoretical arguments

Breaking the curse of dimensionality: from feature selection to feature construction

[Refs]:
Bach (2017). *Breaking the Curse of Dimensionality with Convex Neural Networks.*
Challenges for Theory

Need for new theoretical approaches

- optimization: non-convex (interactions, compositions)
- statistics: over-parameterized, implicit regularization
Challenges for Theory

Need for new theoretical approaches
- optimization: non-convex (interactions, compositions)
- statistics: over-parameterized, implicit regularization

How could theory be useful?
- effects of hyper-parameters
- insights on individual tools in a pipeline
- more robust, more efficient, more accessible models
Today’s program

Note for the audience

- between literature survey, lecture and research talk
- we focus on broad ideas, mathematical details are in references
- rapidly evolving field, not mature yet very large
Today’s program

Note for the audience
- between literature survey, lecture and research talk
- we focus on broad ideas, mathematical details are in references
- rapidly evolving field, not mature yet very large

Content
- neural nets, backpropagation, initialization
- large width asymptotic (static and dynamic)
Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers
Neural Networks

Fully connected architecture:

\[h(w, x) = W_L \sigma(W^{(L-1)} \sigma(... \sigma(W^{(1)}x + b^{(1)})...) + b^{(L-1)}) + b^{(L)} \]

- activation \(\sigma : \mathbb{R} \rightarrow \mathbb{R} \) acts entry-wise
- parameters \(w = ((W^{(1)}, b^{(1)}), \ldots, (W^{(L)}, b^{(L)})) \).
Universal approximation theorem

A 2-layer NN with continuous activation function σ can locally approximate any continuous function to any degree of accuracy if and only if σ is non-polynomial.

[Refs]:
Activation functions

Universal approximation theorem

A 2-layer NN with continuous activation function σ can locally approximate any continuous function to any degree of accuracy if and only if σ is non-polynomial.

Common choices:

- **sigmoid** $\sigma(u) = (1 + \exp(-u))^{-1}$
- **ReLU** $\sigma(u) = \max\{u, 0\} = (u)_+$

[Refs]:
Notation (without bias)

\[x = x^0 \]

\[y^1 \]

\[x^1 \]

\[y^2 \]

\[x^2 \]

\[y^3 = y \]

Matrices \(W^{(\ell)} \in \mathbb{R}^{m_{\ell-1} \times m_\ell} \) for \(0 \leq \ell \leq L \)

\[
\begin{cases}
 x^{(\ell)} = h^{(\ell)}(w^{(\ell)}, x^{(\ell-1)}) = \sigma(y^{(\ell)}) \in \mathbb{R}^{m_\ell} \\
 y_i^{(\ell)} = \sum_{j=1}^{m_{\ell-1}} W_{ij}^{(\ell)} x_j^{(\ell-1)} \in \mathbb{R}^{m_\ell}
\end{cases}
\]

where \(h^{\ell}(w^\ell, x^{\ell-1}) = \sigma(W^\ell x^{\ell-1}) \), except \(h^{(L)} = W^{(L)}x^{(L-1)} \).
Paradigm: Stochastic Gradient Descent with step-size $\eta > 0$

$$w(k) = w(k - 1) - \eta \nabla w[\text{loss}(h(w(k - 1), x(k)), y(k))]$$

Compute the gradient at a sample (x, y) with backpropagation [blackboard]
Backpropagation

Paradigm: Stochastic Gradient Descent with step-size $\eta > 0$

$$w(k) = w(k - 1) - \eta \nabla_w [\text{loss}(h(w(k - 1), x(k)), y(k))]$$

Compute the gradient at a sample (x, y) with backpropagation

[blackboard] Define $\delta x^{(L)} = \nabla^2_{\text{loss}}(y, h(w, x))$ and

$$\left\{ \begin{array}{l}
\delta x^{\ell - 1}_j = \sum_{i=1}^{m_\ell} \sigma'(y^{\ell}_i) \cdot W^{\ell}_{ij} \cdot \delta x^{\ell}_i \\
\delta W^{\ell}_{ij} = x^{\ell - 1}_j \cdot \sigma'(y^{\ell}_i) \cdot \delta x^{\ell}_i
\end{array} \right.$$

\leadsto for general computational graphs: automatic differentiation
Non convexity: initialization matters.

Pitfalls:

- saddle point at 0 if $L \geq 2$
- signal exploding/vanishing with depth
- gradient exploding/vanishing with depth

[blackboard]
Non convexity: initialization matters.

Pitfalls:

- saddle point at 0 if $L \geq 2$
- signal exploding/vanishing with depth
- gradient exploding/vanishing with depth

Solution:

Each layer $W^{(\ell)}_{ij}$ i.i.d with mean 0 and variance $2\tau_w^2/n_{\ell-1}$ (for deep ReLU NNs)

[To go deeper]:
Hanin (2018). *Which neural net architectures give rise to exploding and vanishing gradients?*
Hanin, Rolnick (2018). *How to Start Training: The Effect of Initialization and Architecture*
Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers
Definition (Gaussian process)

A random function \(f(x)\) is a Gaussian process if and only if for every finite set of points \(x_1, x_2, \ldots, x_n\) the random vector

\[
(f(x_1), f(x_2), \ldots, f(x_n))
\]

is a multivariate Gaussian random variable. It is characterized by its mean \(\mu(x) = \mathbb{E}[f(x)]\) and covariance \(\Sigma(x, x') = \mathbb{E}[f(x)f(\bar{x})]\).

Radial covariances \(\Sigma(x, x') = k(|x' - x|)\) and samples of \(\mathcal{G}\mathcal{P}(0, K)\) (Rasmussen and Williams, 2006)
Comments

[blackboard]

- for training, this randomness is not useful
- however, can be used as random features
- covariance depends on the architecture
- applications to Bayesian inference

Realization for a relu NN \((L = 10)\), (Lee et al. 2018)

[To go deeper]:
Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers
Gradient flow

Objective: \[F(w) = \hat{R}(h(w)) = \frac{1}{n} \sum_{k=1}^{n} \text{loss}(y_k, h(w, x_k)). \]

SGD: take iid samples \((x_k, y_k)\) and define

\[w(k+1) = w(k) - \eta \nabla_w (\text{loss}(y_k, h(w(k), x_k))) \]

Gradient flow: small \(\eta\) and infinite samples limit

\[\frac{d}{dt} w(t) = -\nabla_w [\hat{R}(h(w(t)))] \]

\[= -D h_{w(t)}^T \nabla \hat{R}(h(w(t))) \]

\(\rightsquigarrow\) gradient flow convenient to get qualitative insights
Dynamics of training

Let \(h(w) \) be a differentiable model and \(w_0 \) an initialization.
Dynamics of training

Let \(h(w) \) be a differentiable model and \(w_0 \) an initialization.

\[
\frac{d}{dt} h(w(t)) = D h_{w(t)}^T \frac{d}{dt} w(t) = -H_t \nabla \hat{R}(h(w(t)))
\]

Definition (Tangent kernel)

\[
K_t(x, x') = \langle \nabla h(w(t), x), \nabla h(w(t), x') \rangle \quad \text{and} \quad H_t = [K_t(x_i, x_j)]_{i,j}.
\]
Large Neural Networks

Vanilla NN with $W_{i,j}^{(\ell)} \sim \mathcal{N}(0, \tau_w^2 / m_{\ell-1})$ without biases.

Model at initialization

As widths of layers diverge, $h(w_0) \sim \mathcal{GP}(0, \Sigma^L)$ where

$$
\Sigma^{\ell+1}(x, x') = \tau_w^2 \cdot \mathbb{E}_{z^{\ell} \sim \mathcal{GP}(0, \Sigma^\ell)}[\sigma(z^{\ell}(x)) \cdot \sigma(z^{\ell}(x'))].
$$

Vanilla NN with $W_{i,j}^{(\ell)} \overset{i.i.d.}{\sim} \mathcal{N}(0, \tau_w^2/m_{\ell-1})$ without biases.

Model at initialization

As widths of layers diverge, $h(w_0) \sim \mathcal{GP}(0, \Sigma^L)$ where

$$\Sigma_{\ell+1}(x, x') = \tau_w^2 \cdot \mathbb{E}_{z_\ell \sim \mathcal{GP}(0, \Sigma_\ell)}[\sigma(z_\ell(x)) \cdot \sigma(z_\ell(x'))].$$

Limit tangent kernel

In the same limit, $\langle \nabla_w h(w_0, x), \nabla_w h(w_0, x') \rangle \rightarrow K_{0,\infty}(x, x')$ where

$$K_{0,\infty}(x, x') = \sum_{\ell=1}^{L} \left(\Sigma_{\ell-1}(x, x') \prod_{\ell' = \ell}^{L} \dot{\Sigma}^{(\ell')}(x, x') \right)$$

and $\dot{\Sigma}_{\ell+1}(x, x') = \mathbb{E}_{z_\ell \sim \mathcal{GP}(0, \Sigma_\ell)}[\dot{\sigma}(z_\ell(x)) \cdot \dot{\sigma}(z_\ell(x'))].$

Refs:
Theorem (Jacot et al. 2018, reformulated)

Assume that σ has a Lipschitz derivative and consider the gradient flow for the population loss. Then, for all $T > 0$, as the width of all layers grow unbounded, one has uniformly on $[0, T]$ and on compacts of the input space,

$$\langle \nabla_w h(w_t, x), \nabla_w h(w_t, x') \rangle \to K_{0,\infty}(x, x').$$

For the square loss $R(h) = \frac{1}{2} \| h - h^* \|^2$, this gives in this limit,

$$\frac{d}{dt} h_t = -H_{0,\infty}(h_t - h^*)$$

- not mentioned: some subtlety with layer-wise learning rate
- can be extended to cover ReLU activation

[Ref]:
Jacot, Gabriel, Hongler (2018). *Neural Tangent Kernel: Convergence and Generalization in Neural Networks*
Arora, Do, Hu, Li (2019). *On Exact Computation with an Infinitely Wide Neural Net*
A word on quadratic gradient flow

• with our categorization: linear method (features not learnt)
• consider a p.s.d matrix $H \in \mathbb{R}^n \times \mathbb{R}^n$, and the gradient flow, with $h(0) \in \mathbb{R}^n$,

$$\frac{d}{dt} h(t) = -H(h(t) - h^*)$$

has a closed form \textbf{[blackboard]}

• convergence to an interpolating function if H has full rank

Predictor learnt by a ReLU NN [Jacot et al. 2018]
Let \(h(w, x) \) be a differentiable model and \(w_0 \) an initialization.
Let $h(w, x)$ be a differentiable model and w_0 an initialization.

Tangent model

$$\tilde{h}(w, x) = h(w_0, x) + (w - w_0) \cdot \nabla_w h(w_0, x)$$

Scaling the output by α makes the linearization more accurate.
Lazy Training Theorem

Theorem (Lazy training through rescaling)

Assume that $h(w_0, \cdot) = O(1/\alpha)$ and that the loss is quadratic. In the limit of a large scale α, the gradient flow of the non-linear model αh and on the tangent model \tilde{h} learn the same model, up to a $O(1/\alpha)$ remainder.

- instance of implicit bias: lazy because parameters hardly move
- in optimization: whenever $R(h(w))$ behaves like $R(\tilde{h}(w))$
- linear models are better understood (training, generalization)
- recovers kernel ridgeless regression with offset $f(w_0, \cdot)$ and

$$K(x, x') = \langle \nabla_w h(w_0, x), \nabla_w h(w_0, x') \rangle$$

[Refs]:
Allen-Zhu, Li, Liang (2018). Learning and Generalization in Overparameterized Neural Networks [...].
When does lazy training occurs?

Relative scale criterion

For the square loss $\frac{1}{2} \|y - y^*\|^2$:

$$\kappa_h(w_0) := \frac{\| h(w_0) - h^* \|}{\| \nabla h(w_0, \cdot) \|} \frac{\| \nabla^2 h(w_0, \cdot) \|}{\| \nabla h(w_0, \cdot) \|} \ll 1$$

Examples

- **Homogeneous models with** $h(w_0, \cdot) = 0$.

 If for $\lambda > 0$, $h(\lambda w, x) = \lambda L h(w, x)$, then $\kappa_h(w_0) \asymp 1/\| w_0 \|^L$

- **Wide two-layer NNs with iid weights**, $\mathbb{E} \Phi(w_i, \cdot) = 0$.

 If $h(w, x) = \alpha(m) \sum_{i=1}^m \Phi(w_i, x)$, then $\kappa_h(w_0) \asymp (m\alpha(m))^{-1}$

- **Deep NNs with large layers**.

 Similar principle at play.
Figure 1: Training trajectories of a 2-layers ReLU NN in the teacher-student setting. Gradient descent on a finite data set.
(a) Over-parameterized (GD)
(b) Under-parameterized (SGD)

Training a 2-layers ReLU NN in the teacher-student setting generalization in 100-d vs init. scale τ. (a) finite data set, gradient descent (b) pure SGD (directly minimizes the population loss).
Numerical experiment (II)

(a) Accuracy vs scale
(b) Spectrum of the tangent kernel

Training a (VGG) convolutional neural network on the CIFAR data set.
Lessons to be drawn

For practice
- very wide networks may lead to kernel (linear) methods
- non-linear training seems essential for state of the art NN

For theory
- in depth and quantitative analysis sometimes possible
- not just one theory for NNs training
Overview

Introduction

Fully connected neural networks: basics

Infinitely wide static: Gaussian process

Infinitely wide dynamic I: Lazy Training

Infinitely wide nets II: non-linear asymptotic for two layers
Two Layers NNs

With activation \(\sigma \), define
\[
\phi(w_i, x) = W^{(2)}_i \sigma \left(\sum W^{(1)}_{ij} x_j + b_i \right)
\]
and
\[
h(w, x) = \frac{1}{m} \sum_{i=1}^{m} \phi(w_i, x)
\]

Hard problem: existence of spurious minima even with slight over-parameterization and good initialization

[Refs]:
Livni, Shalev-Shwartz, Shamir (2014). *On the Computational Efficiency of Training Neural Networks.*
Safran, Shamir (2018). *Spurious Local Minima are Common in Two-layer ReLU Neural Networks.*
Mean-Field Analysis

Many-particle limit

Training dynamics in the small step-size and infinite width limit:

\[\mu_{t,m} = \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i(t)} \rightarrow_{m \rightarrow \infty} \mu_{t,\infty} \]

[Refs]:
Rotskoff, Vanden-Eijndem (2018). *Parameters as Interacting Particles* [...].
Sirignano, Spiliopoulos (2018). *Mean Field Analysis of Neural Networks*.

[Image of a graph with lines and a point at the origin]
Global Convergence

Theorem (Global convergence, informal)

In the limit of a large hidden layer, the gradient flow of a 2-layer NN initialized with “sufficient diversity” converges to a global minimizer.

- diversity at initialization is key for success of training
- highly non-linear dynamics and regularization allowed
- for the population loss, this means: lowest test loss over all 2-layer NNs

Refs:
Numerical Illustrations

(a) ReLU

(b) Sigmoid

Population loss at convergence vs m for training a 2-layers NN in the teacher-student setting in 100-d.

This is a general principle for convex optimization on measures.
• parameterize the model with a probability measure μ:

$$h(\mu, x) = \int \phi(w, x) d\mu(w), \quad \mu \in \mathcal{P}(\mathbb{R}^d)$$
Wasserstein Gradient Flow

- parameterize the model with a probability measure μ:

$$h(\mu, x) = \int \phi(w, x) d\mu(w), \quad \mu \in \mathcal{P}(\mathbb{R}^d)$$

- consider the population loss over $\mathcal{P}(\mathbb{R}^d)$:

$$F(\mu) := R(h(\mu)) = \mathbb{E}_{(x,y)} \left[\text{loss} \left(\int \phi(w, x) d\mu(w), y \right) \right].$$

\sim convex in linear geometry but non-convex in Wasserstein
Wasserstein Gradient Flow

- parameterize the model with a probability measure μ:
 \[h(\mu, x) = \int \phi(w, x) d\mu(w), \quad \mu \in \mathcal{P}(\mathbb{R}^d) \]

- consider the population loss over $\mathcal{P}(\mathbb{R}^d)$:
 \[F(\mu) := R(h(\mu)) = \mathbb{E}_{(x,y)} \left[\text{loss} \left(\int \phi(w, x) d\mu(w), y \right) \right]. \]
 Convex in linear geometry but non-convex in Wasserstein.

- define the Wasserstein gradient flow:
 \[\mu_0 \in \mathcal{P}(\mathbb{R}^d), \quad \frac{d}{dt} \mu_t = -\text{div}(\mu_t v_t) \]
 where $v_t(w) = -\nabla F'(\mu_t)$ is the Wasserstein gradient of F.

Refs:
Bach (2017). *Breaking the Curse of Dimensionality with Convex Neural Networks.*
Quadratic loss

When \(R(h) = \frac{1}{2} \| h - h^* \|^2 \) for some \(h^* \in \mathcal{F} \), interpretation as a system of charged particles with varying charge and interaction

\[
k((r_1, \theta_1), (r_2, \theta_2)) = r_1 r_2 \langle \Phi(\theta_1), \Phi(\theta_2) \rangle_{\mathcal{F}}.
\]

[Refs:]
Ambrosio, Gigli, Savaré (2008). *Gradient flows in metric spaces and in the space of probability measures.*
Mean-Field Limit for SGD

Now consider the actual training trajectory \(((x_k, y_k) \text{ i.i.d})\):

$$\begin{align*}
 w(k) &= w(k - 1) - \eta m \nabla_w \left[\text{loss}(h(w(k - 1), x(k)), y(k)) \right] \\
 \hat{\mu}_m(k) &= \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i(k)}
\end{align*}$$

Theorem (Mei, Montanari, Nguyen '18)

*Under regularity assumptions, if \(w_1(0), w_2(0), \ldots\) are drawn independently accordingly to \(\mu_0\) then with probability \(1 - e^{-z}\),

$$\|\hat{\mu}_m^{\lfloor t/\eta \rfloor} - \mu_t\|_{BL}^2 \lesssim e^{Ct} \max \left\{ \eta, \frac{1}{m} \right\} \left(z + d + \log \frac{m}{\eta} \right)$$

[Refs]:
Theorem (Homogeneous case)

Assume that μ_0 is supported on a centered sphere or ball, that ϕ is 2-homogeneous in the weights and some regularity. If μ_t converges in Wasserstein distance to μ_∞ then μ_∞ is a global minimizer of F. In particular, if $w_1(0), w_2(0), \ldots$ are drawn accordingly to μ_0 then

$$
\lim_{m,t\to\infty} F(\mu_{t,m}) = \min F.
$$

- applies to 2-layers ReLU NNs
- different statement for sigmoid NNs

[Refs]:
Remark on the scaling

Change of parameterization/initialization ⇒ change of behavior.

<table>
<thead>
<tr>
<th></th>
<th>Mean field</th>
<th>Lazy</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>$h(w, x)$</td>
<td>$\frac{1}{m} \sum \phi(w_i, x)$</td>
</tr>
<tr>
<td>init. predictor</td>
<td>$|h(w_0, \cdot)|$</td>
<td>$O(1/\sqrt{m})$</td>
</tr>
<tr>
<td>scale</td>
<td>κ_0^{-1}</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>displacement</td>
<td>$|w_\infty - w_0|$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

NB: the $1/m$ scaling cannot be used with i.i.d. initialization and $L > 2$.
Through regularization

In regression tasks, adaptivity to subspace when minimizing

$$\min_{\mu \in \mathcal{P}(\mathbb{R}^d)} \frac{1}{n} \sum_{i=1}^{n} \left| \int \phi(w, x_i) d\mu(w) - y_i \right|^2 + \int V(w) d\mu(w)$$

where ϕ is ReLU activation and V a ℓ_1-type regularizer.

\Rightarrow explicit sample complexity bounds for regression
\Rightarrow also some bounds under separability assumptions

[Refs]:
Bach (2017). *Breaking the Curse of Dimensionality with Convex Neural Networks.*
Wei, Lee, Liu, Ma (2018). *Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel.*
Lessons to be drawn

For practice
- over-parameterization/random init. yields global convergence
- choice of scalings is crucial

For theory
- strong generalization guaranties need neurons that move
- non-quantitative technics still leads to insights
What I did not talk about

Focus was on gradient-based training in “realistic” settings.

Wide range of other approaches

- loss landscape analysis
- linear neural networks
- phase transition/computational barriers
- tensor decomposition
- ...

[Refs]:
Arora, Cohen, Golowich, Hu (2018). *Convergence Analysis of Gradient Descent for Deep Linear Neural Networks*
Conclusion

• several regimes, several theories
• calls for new tools from mathematics

Perspectives for research

• how deep NN optim. works is mostly open
• optimization of compositional models?