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A classical non-convex problem

Euclidean formulation. Minimize a loss R on a Hilbert space
F over all possible combinations of features ¢(0,-) € F with § € R
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Loss Optional regularizer

e feature function 6 — ¢(6, -) is differentiable (e.g. neuron or filter)
e convex smooth loss R : F — R (e.g. quadratic or logistic)
o regularizer V' : R? — R possibly non-smooth (/;, /3 penalties)

e minimization also on the number m of features/particles

Measure formulation. Rewrites as a convex problem in the
space of probability measures by setting i == " dy, € P(R?):
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Example 1: Neural networks with 2 layers
Input/output random data (X,Y), loss ¢ and activation o
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o features ¢(0,z) = a - o(w - x + b) with
parameters 6 = (a, b, w)

e 1? is the population loss accessed through
stochastic gradients

e global minimizer here means best possible © ocbserved

—— optimal regressor

generalization among all hidden layer sizes

Example 2: Sparse inverse problems

Recovering a sparse signal from filtered and
noisy observations with BLASSO:

e »(0,-) are weighted filter impulse responses /,\

e 1? is the mean square error

e |/ is a non-smooth sparsity inducing penalty VM

—— observed
® sparse signal

e our viewpoint corresponds in practice to
forward-backward algorithm on the posi-
tions and weights of m spikes

On the Global Convergence of Gradient Descent for

Over-parameterized Models using Optimal Transport

Contributions in a nutshell

New insight. For these non-convex problems, we prove a
consistency result for gradient based optimization methods:
under assumptions, they converge to global minimizers in the
over-parameterization limit.

Key assumptions. Mainly relies on 2 structural assumptions:
e homogeneity of ¢ (full or partial)

— leads to selection of the correct magnitude for each feature
e diversity in the initialization of parameters

— turns out sufficient to explore all combinations of features

Approach. We make a qualitative analysis of the optimization
path using tools from optimal transport theory and topology.

Global convergence result

Main theorem (simplified)

Assume that the initializations 6,(0), 65(0), ... are drawn ran-
domly according to a measure py € P(R?) that satisfies
a support condition (see below). Then the gradient flow

(01(t),05(t),...) of the objective function satisfies
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e see paper for precise statements with technical assumptions and state-
ments for ReLU /sigmoid neural networks and sparse deconvolution

e diversity at initialization is crucial: this is captured by a support con-
dition on L, that also reflects the homogeneity properties of ¢
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Fully homogeneous case:
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Partially homogeneous case:
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Figure: Dotted lines show admissible supports on 2d exemples. Also
plotted: level lines of the Fréchet derivative F"' of F" at g (A, p > 0).
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Many-particle limit of gradient flows

Gradient flow.
gradient g of the objective function and a step-size . We consider the
gradient flow, their idealized continuous-time counter-part

0'(t) o< —g(0(t)).

Gradient-based methods use estimates ¢ of the

Oy1 =0, —n-90) =
n—0

Many-particle limit. When m — oo, the gradient flow is
described by a time-dependent density 11, € P(R?) obeying a partial
differential equation: the optimal transport/Wasserstein gradient
flow of the objective function F'(14) in Equation (1)):

Oppir = =V - (1 V F' ().
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Trajectory of forward-backward | Trajectory of stochastic gradient

algorithm for sparse deconvolution method on a RelLU neural network

with m = 10 (attains optimum) = with m = 100 (attains optimum)

Experimental results

In practice, a slight over-parameterization is sufficient for optimality.
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Sparse deconvolution (d = 2) ReLU neural network (d = 100)

Figure: Excess loss at convergence versus number of particles m for
the non-convex gradient flows (in blue) and convex minimization on the
magnitude only, initialized with random features (in orange). Synthetic
problems where simplest minimizer has my components.
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