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Euclidean formulation. Minimize a loss R on a Hilbert space
F over all possible combinations of features φ(θ, ·) ∈ F with θ ∈ Rd:

inf
m∈N

θ1,...,θm∈Rd

R

(
1

m

m∑
i=1

φ(θi, ·)

)
︸ ︷︷ ︸

Loss

+
1

m

m∑
i=1

V (θi)︸ ︷︷ ︸
Optional regularizer

• feature function θ 7→ φ(θ, ·) is differentiable (e.g. neuron or filter)
•convex smooth loss R : F → R (e.g. quadratic or logistic)
• regularizer V : Rd→ R possibly non-smooth (`1, `22 penalties)
•minimization also on the number m of features/particles

Measure formulation. Rewrites as a convex problem in the
space of probability measures by setting µ = 1

m

∑
δθi ∈ P(Rd):

min
µ∈P(Rd)

F (µ) := R

(∫
Rd

φ(θ, ·)dµ(θ)
)
+

∫
Rd

V (θ)dµ(θ) (1)

Input/output random data (X, Y ), loss ` and activation σ:

min
m,(ai,bi,wi)i

E(X,Y )

[
`

(
1

m

m∑
i=1

aiσ(wi ·X + bi), Y

)]
• features φ(θ, x) = a · σ(w · x + b) with

parameters θ = (a, b, w)

•R is the population loss accessed through
stochastic gradients
•global minimizer here means best possible

generalization among all hidden layer sizes

Example 1: Neural networks with 2 layers

Recovering a sparse signal from filtered and
noisy observations with BLASSO:
•φ(θ, ·) are weighted filter impulse responses
•R is the mean square error
•V is a non-smooth sparsity inducing penalty
•our viewpoint corresponds in practice to

forward-backward algorithm on the posi-
tions and weights of m spikes

Example 2: Sparse inverse problems

A classical non-convex problem
New insight. For these non-convex problems, we prove a
consistency result for gradient based optimization methods:
under assumptions, they converge to global minimizers in the
over-parameterization limit.

Key assumptions. Mainly relies on 2 structural assumptions:
•homogeneity of φ (full or partial)
→ leads to selection of the correct magnitude for each feature

•diversity in the initialization of parameters
→ turns out sufficient to explore all combinations of features

Approach. We make a qualitative analysis of the optimization
path using tools from optimal transport theory and topology.

Contributions in a nutshell

Assume that the initializations θ1(0), θ2(0), . . . are drawn ran-
domly according to a measure µ0 ∈ P(Rd) that satisfies
a support condition (see below). Then the gradient flow
(θ1(t), θ2(t), . . . ) of the objective function satisfies

lim
m,t→∞

F

(
1

m

m∑
i=1

δθi(t)

)
= min

µ∈P(Rd)
F (µ).

Main theorem (simplified)

• see paper for precise statements with technical assumptions and state-
ments for ReLU/sigmoid neural networks and sparse deconvolution
•diversity at initialization is crucial: this is captured by a support con-

dition on µ0, that also reflects the homogeneity properties of φ
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Partially homogeneous case:
φ((θx, λθy), ·) = λpφ((θx, θy), ·)
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Fully homogeneous case:
φ((λθx, λθy), ·) = λpφ((θx, θy), ·)

Figure: Dotted lines show admissible supports on 2d exemples. Also
plotted: level lines of the Fréchet derivative F ′ of F at µ0 (λ, p > 0).

Global convergence result

Gradient flow. Gradient-based methods use estimates g̃ of the
gradient g of the objective function and a step-size η. We consider the
gradient flow, their idealized continuous-time counter-part

θt+1 = θt − η · g̃(θt) ⇒
η→0

θ′(t) ∝ −g(θ(t)).

Many-particle limit. When m → ∞, the gradient flow is
described by a time-dependent density µt ∈ P(Rd) obeying a partial
differential equation: the optimal transport/Wasserstein gradient
flow of the objective function F (µ) in Equation (1):

∂tµt = −∇ · (µt∇F ′(µt)).
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Trajectory of forward-backward
algorithm for sparse deconvolution

with m = 10 (attains optimum)

2 1 0 1 2 3

2

1

0

1

2

Trajectory of stochastic gradient
method on a ReLU neural network
with m = 100 (attains optimum)

Many-particle limit of gradient flows

In practice, a slight over-parameterization is sufficient for optimality.
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Figure: Excess loss at convergence versus number of particles m for
the non-convex gradient flows (in blue) and convex minimization on the
magnitude only, initialized with random features (in orange). Synthetic
problems where simplest minimizer has m0 components.
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