UNBALANCED OPTIMAL TRANSPORT THEORY AND APPLICATIONS

Lénaïc Chizat¹

¹DMA, École Normale Supérieure Advisors : G. Peyré and F-X. Vialard

SUMMARY

The need to extend optimal transport (OT) theory to measures of arbitrary mass has often come forward in applications but there was lacking a general *unbalanced* optimal transport theory until 2015, when several papers appeared on the subject. In this overview, we present (1) a selection of theoretical results, (2) a numerical algorithm and (3) illustrations and applications.

CLASSICAL OPTIMAL TRANSPORT

Given probability measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ on measurable spaces and a *cost* function $c : X \times Y \to \mathbb{R} \cup \{+\infty\}$, the OT problem writes

$$C(\mu,\nu) \stackrel{\text{def}}{=} \min_{\gamma \in \Pi(\mu,\nu)} \left\{ \int_{X \times Y} c(x,y) \, \mathrm{d}\gamma(x,y) \right\}$$

NUMERICAL RESOLUTION

If $X = (x_i)_i$ and $Y = (y_j)_j$ are discretized, solving unbalanced optimal transport problems (and WF barycenters, gradient flows...) requires to solve problems of the form (with F_1 , F_2 convex, l.s.c.)

$$\min_{\gamma \in \mathbb{R}^{I \times J}} \sum_{i,j} c_{i,j} \gamma_{i,j} + F_1 \left(\sum_i \gamma_{i,j} \right) + F_2 \left(\sum_j \gamma_{i,j} \right) + \iota_{\mathbb{R}^{I \times J}_+}(\gamma)$$

Following a now standard technique in classical OT, we propose to:

replace positivity constraint by the entropy barrier € ∑ γ_{i,j}(log(γ_{i,j}) − 1);
solve this smoothed problem with the *iterative scaling* algorithm (below);
optionally decrease €, solve again with a better initialization, and so on.

where $\Pi(\mu, \nu)$ is the set of couplings between μ and ν i.e. measures $\gamma \in \mathcal{P}(X \times Y)$ such that $P_{\#}^{X} \gamma = \mu$ and $P_{\#}^{Y} \gamma = \nu$.

Key results:

- characterization of minimizers through convex duality theory;
- if $c(x, y) = dist(x, y)^2$ then $C(\mu, \nu)^{\frac{1}{2}}$ is the *Wasserstein* metric on $\mathcal{P}(X)$;
- Find dynamic formulation if $X = Y \subset \mathbb{R}^d$ and $c(x, y) = |y x|^2$:

$$C(\mu,\nu) = \inf_{\substack{\rho_0=\mu\\\rho_1=\nu}} \left\{ \int_0^1 \left(\int_X |v_t(x)|_2^2 \,\mathrm{d}\rho_t(x) \right) \,\mathrm{d}t \, ; \, \partial_t \rho + \operatorname{div}(\rho v) = 0 \right\} \, .$$

Some applications (among many others):

- ▶ PDEs : gives a metric structure on $\mathcal{P}(X)$ for gradient flows;
- nonparametric comparison of data distributions in machine learning;
- image registration, shape interpolation, color transfer...

In many applications, the mass constraint on the marginals is not natural.

UNBALANCED OPTIMAL TRANSPORT

Optimal entropy-transport problems formulation [6]

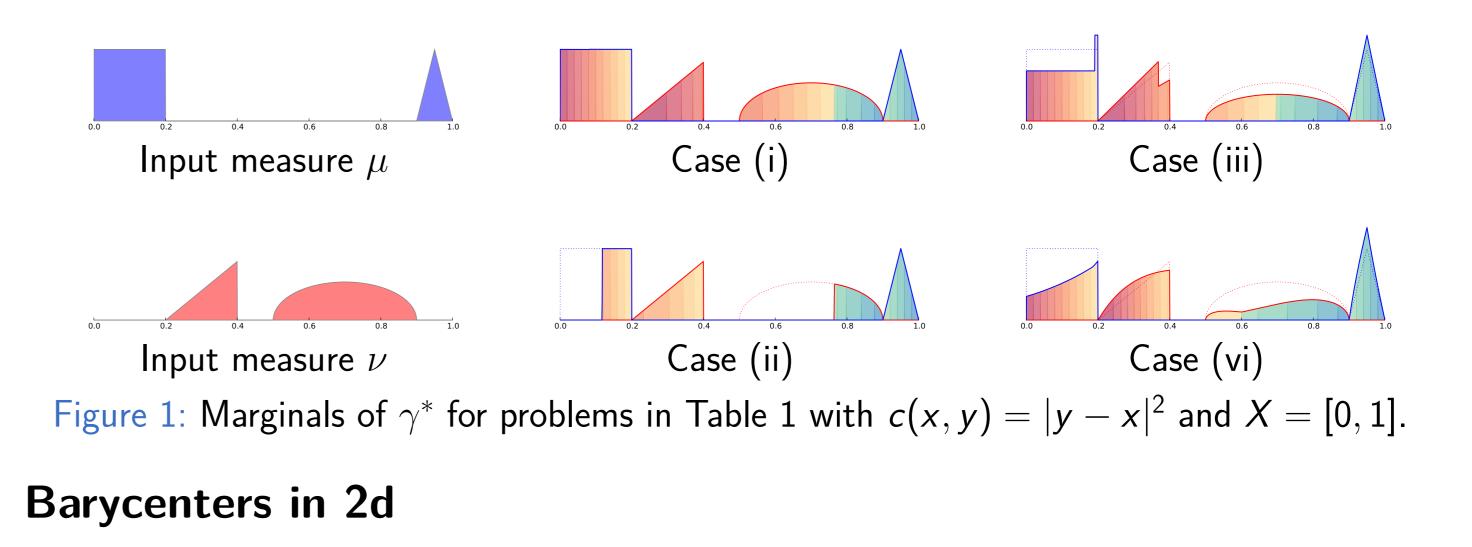
Given nonnegative measures $\mu \in \mathcal{M}_+(X)$, $\nu \in \mathcal{M}_+(Y)$ and a cost c, solve $C(\mu, \nu) \stackrel{\text{def}}{=} \min_{\gamma \in \mathcal{M}_+(X \times Y)} \left\{ \int_{X \times Y} c(x, y) \, \mathrm{d}\gamma(x, y) + D_X(P_{\#}^X \gamma | \mu) + D_Y(P_{\#}^Y \gamma | \nu) \right\}$ where D_X and D_Y are convex φ -divergence functionals.

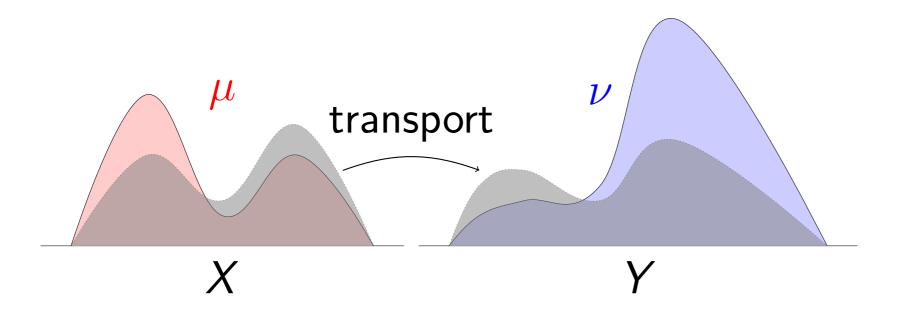
Iterative scaling algorithm

Defining $K = (\exp(-c_{i,j}/\epsilon))_{I \times J}$, $\operatorname{prox}_{F}^{\mathsf{KL}}(x) = \operatorname{argmin}_{y} F(y) + \mathsf{KL}(y|x)$ and $b^{(0)} = \mathbb{1}_{I}$, compute iteratively: $b^{(\ell+1)} \leftarrow \frac{\operatorname{prox}_{F_{1}/\epsilon}^{\mathsf{KL}}(Ka^{\ell})}{Ka^{\ell}}$ and $a^{(\ell+1)} \leftarrow \frac{\operatorname{prox}_{F_{2}/\epsilon}^{\mathsf{KL}}(K^{\mathsf{T}}b^{\ell+1})}{K^{\mathsf{T}}b^{\ell+1}}$. **Proposition:** $(a_{i}^{\ell}K_{i,j}b_{j}^{\ell})_{i,j}$ converges to a minimizer of the smoothed problem.

ILLUSTRATIONS AND APPLICATIONS

Unbalanced optimal transport in 1d

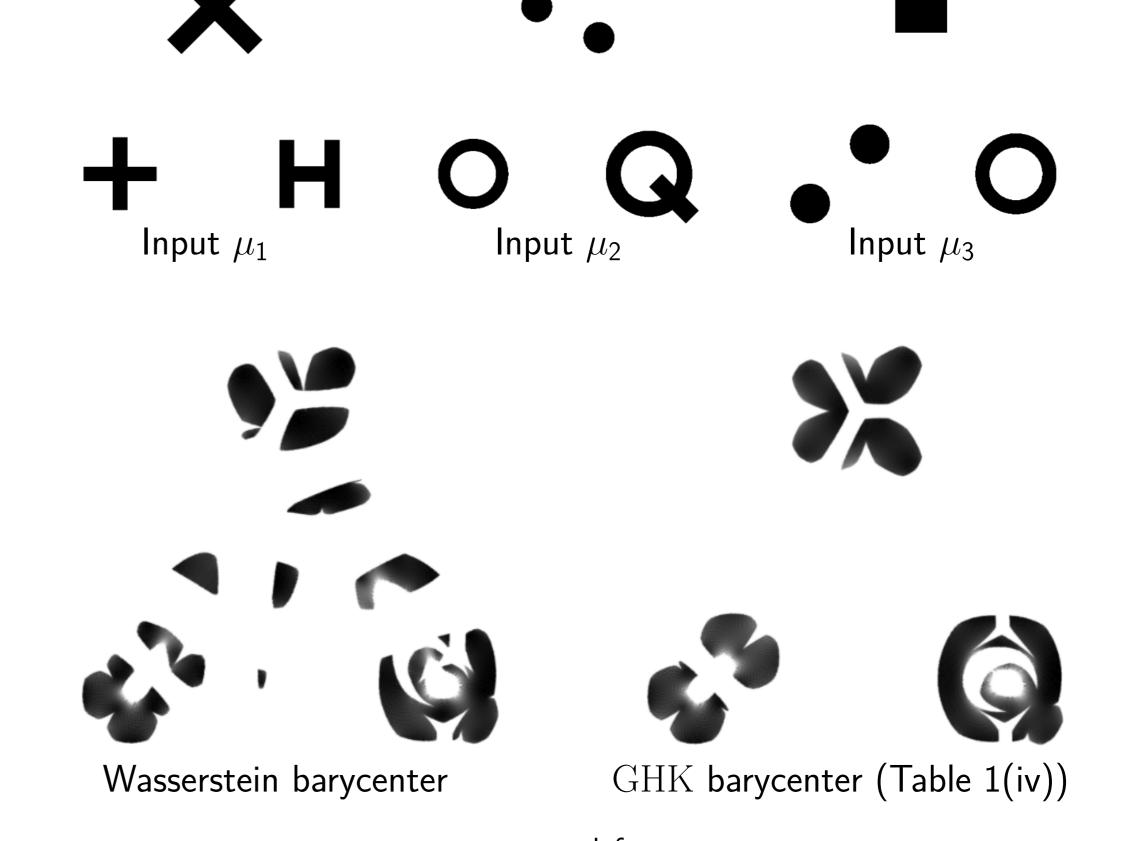




	Name of $C(\mu, \nu)$	Constraint/divergence $D(\lambda \mu)$	Cost $c(x, y)$
(i)	W_2^2	$\lambda = \mu$	$d(x, y)^2$
(ii)	Partial OT	$ \lambda-\mu _{TV}$	_
(iii)	Range OT	$\lambda \in [\alpha \mu, \beta \mu]$	_
(iv)	GHK^2	$ ext{KL}(\lambda \mu)$	$d(x, y)^2$
(v)	WF^2	$\mathrm{KL}(\lambda \mu)$ -	$-\log \cos^2_+(d(x,y))$

Table 1: Examples of entropy-transport problems. Here d metric on X = Y and KL is the Kullback-Leibler divergence defined as $\int_X (\sigma \log(\sigma) - \sigma + 1) d\mu$ if $\lambda = \sigma \mu$, $+\infty$ otherwise.

Classical results in optimal transport theory have their "unbalanced" counterpart. In particular, the natural extension of W_2 is WF in Table 1 (v):



Gradient flow of the functional $G(\mu) \stackrel{\text{def}}{=} -\mu(X)$ on the space of positive densities smaller than 1, endowed with the metric WF: one recovers mechanical tumor growth models of Hele-Shaw type [4].

The Wasserstein-Fisher-Rao metric [1, 5, 6]

The quantity WF defined in Table 1(v):

- defines a complete metric on $\mathcal{M}_+(X)$ (geodesic if X is geodesic);
- its square is equal to the dynamic formulation

$$\inf_{\substack{\rho_0=\mu\\\rho_1=\nu}} \left\{ \int_0^1 \left(\int_X (|v_t(x)|_2^2 + \frac{1}{4}g_t(x)^2) \,\mathrm{d}\rho_t(x) \right) \,\mathrm{d}t \, ; \, \partial_t \rho + \operatorname{div}(\rho v) = \rho g \right\}$$

• endows $\mathcal{M}_+(X)$ with a "Riemannian-like" structure which tensor is an inf-convolution between the Wasserstein and the Fisher-Rao tensor.

REFERENCES

- [1] L. Chizat, G. Peyré, B. Schmitzer, F.-X. Vialard, An interpolating distance between optimal transport and Fisher-Rao metrics, FoCM, 2015.
- [2] —, Unbalanced optimal transport: geometry and Kantorovich formulation, 2015.
- 3] —, Scaling algorithms for unbalanced transport problems, 2016.
- [4] S. Di Marino, L. Chizat, A tumor growth Hele-Shaw problem as a gradient flow, in preparation.
- [5] S. Kondratyev, L. Monsaingeon, D. Vorotnikov, A new optimal transport distance on the space of finite radon measures, 2015.
- [6] M. Liero, A. Mielke, G. Savaré, Optimal entropy-transport problems and the Hellinger-Kantorovich distance, 2015