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SUMMARY

The need to extend optimal transport (OT) theory to measures of arbitrary
mass has often come forward in applications but there was lacking a general
unbalanced optimal transport theory until 2015, when several papers appeared
on the subject. In this overview, we present (1) a selection of theoretical
results, (2) a numerical algorithm and (3) illustrations and applications.

CLASSICAL OPTIMAL TRANSPORT

Given probability measures ;1 € P(X) and v € P(Y) on measurable spaces
and a cost function ¢ : X X Y — RU {400}, the OT problem writes

\

min </ c(x,y)dy(x,y) ¢
XxY

vel(uy) | )
where T1(u, V) is the set of couplings between ;1 and v i.e. measures
v € P(X x Y) such that P;fv = 1 and P;v = V.

Key results:

» characterization of minimizers through convex duality theory;
- if c(x,y) = dist(x, y)? then C(u,v)? is the Wasserstein metric on P(X);

» fluid dynamic formulation if X = Y C R and ¢(x, y) = |y — x|*

Clu,v) = inf, { /O | ( /X |vt(x)\§dpt(x)> dt: Dyp + div(pv) = o} |

P1=
Some applications (among many others):

= PDES :

» nonparametric comparison of data distributions in machine learning;

gives a metric structure on P(X) for gradient flows;

» image registration, shape interpolation, color transfer...

In many applications, the mass constraint on the marginals is not natural.

UNBALANCED OPTIMAL TRANSPORT

Optimal entropy-transport problems formulation

\
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Given nonnegative measures 1 € M (X), v € M_(Y) and a cost c, solve
min

def
C —
(,LL, V) YEM L (XXY)

where Dx and Dy are convex o-divergence functionals.
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Name of C(u,v) Constraint/divergence D(A|u)  Cost c¢(x, y)
(i W3 A= H d(x,y)’
(ii Partial OT A — | 1v -
(iii) Range OT A€ |au, Bul -
(iv) GHK? KL(A| ) d(x,y)’
(v) WE? KL(A|w) — log cos? (d(x,y))

Table 1: Examples of entropy-transport problems. Here d metric on X = Y and KL is the
Kullback-Leibler divergence defined as [, (o log(c) — o + 1) dp if A = op, +00 otherwise.

Classical results in optimal transport theory have their “unbalanced”
counterpart. In particular, the natural extension of W5 is WF in Table 1 (v):

The Wasserstein-Fisher-Rao metric |1, 5, 6

he quantity WF defined in Table 1(v):

» defines a complete metric on M (X) (geodesic if X is geodesic);
» its square is equal to the dynamic formulation

inf { [ ([ 008+ im0 ) ) it -+ (o) = pg}

P1=
» endows M (X) with a “Riemannian-like” structure which tensor is an
inf-convolution between the Wasserstein and the Fisher-Rao tensor.
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Geodesic for WE on M (R?)

NUMERICAL RESOLUTION

If X = (x;); and Y = (y;), are discretized, solving unbalanced optimal
transport problems (and WEF barycenters, gradient flows...) requires to solve
problems of the form (with F;, F, convex, l.s.c. )

ERI*J Z cijvij+ F1 ( Z %‘,j) + F ( Z %‘,j) + tgixs(7)
l J

min
)

Following a now standard technique in classical OT, we propose to:

» replace positivity constraint by the entropy barrier € > _~; i(log(7i;) — 1);
» solve this smoothed problem with the iterative scaling algorithm (below);
» optionally decrease ¢, solve again with a better initialization, and so on.

Iterative scaling algorithm

Defining K = (exp(—c;/€))ixs. proxg-(x) = argmin, F(y) + KL(y|x) and
b9 = 1,, compute iteratively'
proxFl/ (Ka") prosz/ (KT pH1)

K3t KT pi+l

gK’be) . j converges to a minimizer of the smoothed problem.

and  al*tb

b(€+1) y

Proposition: (

ILLUSTRATIONS AND APPLICATIONS

Unbalanced optimal transport in 1d

0.0 0.2 0.4 0.6 0.8 1.0 0.0

Input measure p

|

Input measure v

 Case (v.i)
ly — x|* and X = [0, 1].

© Case (||)
Figure 1: Marginals of v* for problems in Table 1 with ¢(x, y) =

Barycenters in 2d
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Wasserstein barycenter

GHK barycenter (Table 1(iv)

Gradient flow of the functional G(u) &t —1(X) on the space of positive

densities smaller than 1, endowed with the metric WE': one recovers
mechanical tumor growth models of Hele-Shaw type [4].

Evolution of a tumor blue on a domain in R?.
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