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SUMMARY
The need to extend optimal transport (OT) theory to measures of arbitrary
mass has often come forward in applications but there was lacking a general
unbalanced optimal transport theory until 2015, when several papers appeared
on the subject. In this overview, we present (1) a selection of theoretical
results, (2) a numerical algorithm and (3) illustrations and applications.

CLASSICAL OPTIMAL TRANSPORT
Given probability measures µ ∈ P(X ) and ν ∈ P(Y ) on measurable spaces
and a cost function c : X × Y → R ∪ {+∞}, the OT problem writes

C(µ, ν) def= min
γ∈Π(µ,ν)

{∫
X×Y

c(x , y) dγ(x , y)
}

where Π(µ, ν) is the set of couplings between µ and ν i.e. measures
γ ∈ P(X × Y ) such that PX

#γ = µ and PY
#γ = ν.

Key results:
I characterization of minimizers through convex duality theory;
I if c(x , y) = dist(x , y)2 then C(µ, ν)1

2 is the Wasserstein metric on P(X );
I fluid dynamic formulation if X = Y ⊂ Rd and c(x , y) = |y − x |2:

C(µ, ν) = inf
ρ0=µ
ρ1=ν

{∫ 1

0

(∫
X
|vt(x)|22 dρt(x)

)
dt ; ∂tρ + div(ρv) = 0

}
.

Some applications (among many others):
I PDEs : gives a metric structure on P(X ) for gradient flows;
I nonparametric comparison of data distributions in machine learning;
I image registration, shape interpolation, color transfer...

In many applications, the mass constraint on the marginals is not natural.

UNBALANCED OPTIMAL TRANSPORT

Optimal entropy-transport problems formulation [6]
Given nonnegative measures µ ∈M+(X ), ν ∈M+(Y ) and a cost c , solve

C(µ, ν) def= min
γ∈M+(X×Y )

{∫
X×Y

c(x , y) dγ(x , y) + DX(PX
#γ|µ) + DY (PY

#γ|ν)
}

where DX and DY are convex ϕ-divergence functionals.

X

µ

Y
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Name of C(µ, ν) Constraint/divergence D(λ|µ) Cost c(x , y)
(i) W2

2 λ = µ d(x , y)2
(ii) Partial OT |λ− µ|TV -
(iii) Range OT λ ∈ [αµ, βµ] -
(iv) GHK2 KL(λ|µ) d(x , y)2
(v) WF2 KL(λ|µ) − log cos2+ (d(x , y))
Table 1: Examples of entropy-transport problems. Here d metric on X = Y and KL is the
Kullback-Leibler divergence defined as

∫
X(σ log(σ)− σ + 1) dµ if λ = σµ, +∞ otherwise.

Classical results in optimal transport theory have their “unbalanced”
counterpart. In particular, the natural extension of W2 is WF in Table 1 (v):
The Wasserstein-Fisher-Rao metric [1, 5, 6]
The quantity WF defined in Table 1(v):

I defines a complete metric onM+(X ) (geodesic if X is geodesic);
I its square is equal to the dynamic formulation

inf
ρ0=µ
ρ1=ν

{∫ 1

0

(∫
X

(|vt(x)|22 + 1
4gt(x)2) dρt(x)

)
dt ; ∂tρ + div(ρv) = ρg

}
I endowsM+(X ) with a “Riemannian-like” structure which tensor is an
inf-convolution between the Wasserstein and the Fisher-Rao tensor.

t = 0• t = 1
Geodesic for WF onM+(R2)

NUMERICAL RESOLUTION
If X = (xi)I and Y = (yj)J are discretized, solving unbalanced optimal
transport problems (and WF barycenters, gradient flows...) requires to solve
problems of the form (with F1, F2 convex, l.s.c. )

min
γ∈RI×J

∑
i ,j

ci ,jγi ,j + F1

(∑
i
γi ,j

)
+ F2

(∑
j
γi ,j

)
+ ιRI×J

+
(γ)

Following a now standard technique in classical OT, we propose to:
I replace positivity constraint by the entropy barrier ε

∑
γi ,j(log(γi ,j)− 1);

I solve this smoothed problem with the iterative scaling algorithm (below);
I optionally decrease ε, solve again with a better initialization, and so on.

Iterative scaling algorithm

Defining K = (exp(−ci ,j/ε))I×J , proxKL
F (x) = argminy F (y) + KL(y |x) and

b(0) = 1I, compute iteratively:

b(`+1) ←
proxKL

F1/ε
(Ka`)

Ka` and a(`+1) ←
proxKL

F2/ε
(K Tb`+1)

K Tb`+1 .

Proposition: (a`i Ki ,jb`j )i ,j converges to a minimizer of the smoothed problem.

ILLUSTRATIONS AND APPLICATIONS
Unbalanced optimal transport in 1d
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Figure 1: Marginals of γ∗ for problems in Table 1 with c(x , y) = |y − x |2 and X = [0, 1].

Barycenters in 2d

Input µ1 Input µ2 Input µ3

Wasserstein barycenter GHK barycenter (Table 1(iv))

Gradient flow of the functional G(µ) def= −µ(X ) on the space of positive
densities smaller than 1, endowed with the metric WF: one recovers
mechanical tumor growth models of Hele-Shaw type [4].

t = 0• t = 1, 6
Evolution of a tumor (blue) on a domain in R2.

REFERENCES
[1] L. Chizat, G. Peyré, B. Schmitzer, F.-X. Vialard, An interpolating distance between optimal transport and

Fisher-Rao metrics, FoCM, 2015.
[2] —, Unbalanced optimal transport: geometry and Kantorovich formulation, 2015.
[3] —, Scaling algorithms for unbalanced transport problems, 2016.
[4] S. Di Marino, L. Chizat, A tumor growth Hele-Shaw problem as a gradient flow, in preparation.
[5] S. Kondratyev, L. Monsaingeon, D. Vorotnikov, A new optimal transport distance on the space of finite

radon measures, 2015.
[6] M. Liero, A. Mielke, G. Savaré, Optimal entropy-transport problems and the Hellinger-Kantorovich

distance , 2015


