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What is this talk about?

Minimize a convex function over measures (domain Θ ⊂ Rd):

min
µ∈M(Θ)

J(µ)

Challenges

• infinite dimensional ⇒ parameterization

• covers all of continuous optimization ⇒ more structure

Content

Qualitative study of a practical method that provably reaches

global optimality asymptotically.
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Motivating example I: signal processing

Sparse deconvolution

Recover a sparse signal µ =
∑m

i=1 wiδθi
from a filtered version y = ϕ ∗ µ+ noise

Variational approach (B-LASSO)

min
µ∈M(Θ)

1

2
‖y − ϕ ∗ µ‖2

L2︸ ︷︷ ︸
loss

+ λ‖µ‖TV︸ ︷︷ ︸
regularization

→ illustrative example in this talk : signal with 5 spikes on the

1-torus and ϕ Dirichlet (low pass) filter of order 7.

[Refs]

Azäıs, De Castro & Gamboa (2015). Spike detection from inaccurate samplings.

Duval & Peyré (2015). Exact support recovery for sparse spikes deconvolution.
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Motivating example II: machine learning

Statistical learning

Let (X ,Y ) a couple of r.v. on Rd × R
and a smooth convex loss ` : R2 → R+.

Given n samples (xi , yi )
n
i=1, “solve”

min
f :Rd→R

E `(f (X ),Y )

Neural network with 1 hidden layer

Write fµ(x) =
∫
σ(θ · x)dµ(θ) and solve

min
µ∈M(Θ)

1

n

n∑
i=1

`(fµ(xi ), yi )︸ ︷︷ ︸
loss

+ λ‖µ‖TV︸ ︷︷ ︸
regularization

[Refs] Bach (2017). Breaking the curse of dimensionality with convex neural networks.
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Common structure

• Differentiable dictionary (φ(θ))θ∈Θ ⊂ F in Hilbert space F
• Smooth convex loss R : F → R+

J∗ = min
µ∈M(Θ)

J(µ), J(µ) := R
(∫
φ dµ

)︸ ︷︷ ︸
loss

+ λ‖µ‖TV︸ ︷︷ ︸
regularization

Examples

• sparse deconvolution: φ(θ) : x 7→ ϕ(x − θ)

• neural networks with 1 hidden layer: φ(θ) : x 7→ σ(θ · x)

• inversion of sketches, low rank tensor decomposition, linear

system identification, matrix completion...

[Refs] Boyd, Schiebinger, Recht (2017). The alternating descent conditional gradient method for sparse inverse

problems.
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Particle gradient flow



Construction

Change of unknown (lifting)

Let, for µ ∈ P(R×Θ),

h(µ)(dθ) =

∫
R
w µ(dw , dθ)

and pose F (µ) ≈ J(h(µ)).

Remark: ‖ν‖TV = minh(µ)=ν

∫
|w |dµ(w , θ)

Definition (Particle gradient flow)

Gradient flow u′(t) = −m∇Fm(u(t)) in (R×Θ)m, where

Fm(u(t)) :=F (µm,t), µm,t :=
1

m

m∑
i=1

δui (t)

Remark: in practice, gradient descent or its variants (stochastic,

proximal, fast, etc).
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Comparison of methods

pros cons

conditional gradient known rate, sparse sometimes NP hard

moment methods asymptotically exact heavy, not generic

particle gradient flow practical, cheap global optimality ?

Contribution

Proof of asymptotic global convergence in the m, t →∞ limit.

[Refs]

Bach (2017). Breaking the curse of dimensionality with convex neural networks.

Lasserre (2010). Moments, positive polynomials and their applications.

Catala, Duval, Peyré (2017). A low-rank approach to off-the-grid sparse deconvolution.
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Main result

Objective: φ differentiable and bounded, R smooth and convex:

F (µ) = R(
∫
wφ(θ)dµ(w , θ)) + λ

∫
|w |dµ

Theorem (Global convergence, informal)

If the initialization is such that µm,0 converges to a measure which

support separates {−∞} ×Θ from {+∞}×Θ, then

lim
m,t→∞

F (µm,t) = min
µ∈M+(R×Θ)

F (µ)

lim
m,t→∞

J(h(µm,t)) = min
µ∈M(Θ)

J(µ).

Remarks

• bad local minima exist, but are avoided if good initialization

• also a statement if φ homogeneous and unbounded
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Illustration

(a) Not enough particles (b) Breaks separation assumption

(c) Success (d) Success

8/16



Particle-complexity

What about convex weights minimization ?

Particle-complexity

(a) Sparse deconvolution (d = 1) (b) Neural net (sigmoid, d = 100)

Excess loss at convergence vs nb of particles m.

Simplest minimizer has m0 particles.
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Proof arguments



Many-particle limit

−→
m→∞

Proposition (Wasserstein gradient flow)

If µm,0 converges to µ0 (in Wasserstein) then (µm,t)t converges to

the unique Wasserstein gradient flow (µt)t of F starting from µ0,

characterized by

∂tµt + div(vtµt) = 0 with vt = −∇F ′µt .

[See also]

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijnden (2018). Neural Networks as Interacting Particle Systems.

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.
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Remarks

Proof technique

• existence and uniqueness through “local” geodesic

semi-convexity and general theory of Ambrosio et al.

• the term of global interaction µ 7→ R(
∫
φdµ) is new

Quadratic loss

When R(f ) = 1
2‖f − f ∗‖2 for some f ∗ ∈ F , interpretation as a

system of charged particles with varying charge and interaction

kernel

k((w1, θ1), (w2, θ2)) = w1w2〈φ(θ1), φ(θ2)〉F .
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Differential and Wasserstein (sub)-differential

The differential of F :M(R×Θ)→ R at µ is a function F ′µ.

The velocity of a particle located at u at time t is −∇F ′µt (u).

Level sets of F ′µt
(a.k.a mean field potential) and particles of µt . 12/16



Optimality conditions

Optimality conditions

Global minimizers of F on M+(R×Θ) are characterized by{
F ′µ ≥ 0 everywhere on R×Θ

F ′µ = 0 µ-a.e.

Wasserstein gradient flow stationary points

Stationary points of (µt) are characterized by ∇F ′µ = 0, µ-a.e.

Homogeneity ⇒ F ′µ = 0, µ-a.e.

13/16



Avoiding bad local minima

Non-optimal stationary point µ̃ and F ′µ̃.

Proposition (Escape criterion)

Let µ̃ such that F ′µ̃ � 0. There is a neighborhood N (µ̃) and a “red

set” (as above) such that:

If µt0 ∈ N (µ̃) and µt0 gives mass to the set, then µt subsequently

escapes from N (µ̃).
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Separation property

Definition (Separation property)

Any continuous path joining {−∞}×Θ

to {+∞}×Θ intersects support(µ).

Support(µt) in red

Proposition (Stability)

If µ0 satisfies the separation property, so does µt for t > 0.

Proof.

• easy if vt is continuous : the flow of characteristics is a diffeo

• otherwise, topological degree theory
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Proof conclusion

“Proof” of the main theorem.

If µ0 satisfies the separation property, then (µt) avoids all bad

local minima.

Remarks

• quite insensitive to the choice of

metric

• the 2-homogeneous case involves

spherical geometry Training ReLU neural net

with SGD to optimality
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Conclusion

• practical method, global convergence

• non-convex: initialization matters

Perspectives

• quantitative statements

• other models: more than one layer

[Paper] Chizat, Bach (2018). On the Global Convergence of

Over-parameterized Models using Optimal Transport.
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