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What is this talk about?

Minimize a convex function over measures (domain © C RY):

in J
s ()

Challenges

e infinite dimensional = parameterization

e covers all of continuous optimization =- more structure
Content
Qualitative study of a practical method that provably reaches

global optimality asymptotically.
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Motivating example I: signal processing

Sparse deconvolution

J Recover a sparse signal @t = > /" ; w;dp,
' from a filtered version y = ¢ * = + noise
L i .M\A M i oy f i Variational approach (B-LASSO)
Ty \{“ 5 1
/ - :
min  —|ly — @ % + A
Lomingy ol =@ x i+ Al
—— observed y regularization
® sparse i loss

— illustrative example in this talk : signal with 5 spikes on the
1-torus and ¢ Dirichlet (low pass) filter of order 7.

[Refs]

Azais, De Castro & Gamboa (2015). Spike detection from inaccurate samplings.
Duval & Peyré (2015). Exact support recovery for sparse spikes deconvolution
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Motivating example Il: machine learning

Statistical learning

Let (X, Y) a couple of r.v. on RY x R
and a smooth convex loss £ : R? — R, .

Given n samples (x;, yi)"_;, "solve”

observed r min E f(f(X), Y)

—— optimal regressor f:RYI—R
Rd
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Motivating example Il: machine learning

Statistical learning

Let (X, Y) a couple of r.v. on RY x R
and a smooth convex loss £ : R? — R, .

Given n samples (x;, yi)"_;, "solve”

® observed min |E f(f_(X), Y)
—— optimal regressor f:RYI—R
Rd

Neural network with 1 hidden layer
----- o= Relw Write f,(x) = [ o(6 - x)du(6) and solve

14 === o= sigmoid

[ g i i)+ A
uen/n\lxllr(]e)nz_x,_yz M

i z 5 loss regularization

[Refs] Bach (2017). Breaking the curse of dimensionality with convex neural networks,
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Common structure

e Differentiable dictionary (¢(6))sco C F in Hilbert space F

e Smooth convex loss R : F — R

Jr=min_J(p), () =R (fodu) + Mullrv
HEM(O) —_——— Rl,_/
loss regularization
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Common structure

e Differentiable dictionary (¢(6))sco C F in Hilbert space F
e Smooth convex loss R : F — R

min (k) (1) =R (f6 du) + Mulrv
loss regularization
Examples

e sparse deconvolution: ¢(0) : x — o(x — 0)
e neural networks with 1 hidden layer: ¢(0) : x — o(6 - x)
e inversion of sketches, low rank tensor decomposition, linear

system identification, matrix completion...

[Refs] Boyd, Schiebinger, Recht (2017). The alternating descent conditional gradient method for sparse inverse
problems.
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Particle gradient flow



1 1

Change of unknown (lifting)
Let, for p € P(R x ©),

()(d6) = [ wp(dw,d0)

R

and pose F(u) =~ J(h(u)). -
Remark: ||v||Tv = ming)=, [ |w|du(w, )
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Change of unknown (lifting)
Let, for p € P(R x ©),

()(d6) = [ wp(dw,d0)

R

and pose F(u) =~ J(h(u)). -
Remark: ||v||Tv = ming)=, [ |w|du(w, )

Definition (Particle gradient flow)
Gradient flow u/(t) = —mVFp(u(t)) in (Rx©)™, where

1 m
Fm(U(t)):: F(,Um,t)a Pmit = ; Z(Su,-(t)
i=1

Remark: in practice, gradient descent or its variants (stochastic,
proximal, fast, etc). 5/16



Comparison of methods

pros cons
conditional gradient known rate, sparse | sometimes NP hard
moment methods asymptotically exact | heavy, not generic
particle gradient flow practical, cheap global optimality ?

Contribution
Proof of asymptotic global convergence in the m, t — oo limit.

[Refs]

Bach (2017). Breaking the curse of dimensionality with convex neural networks.
Lasserre (2010). Moments, positive polynomials and their applications.

Catala, Duval, Peyré (2017). A low-rank approach to off-the-grid sparse deconvolution.
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Main result

Objective: ¢ differentiable and bounded, R smooth and convex:

= R([ wo(8)du(w,0)) + A [ |w|du
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Objective: ¢ differentiable and bounded, R smooth and convex:
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Theorem (Global convergence, informal)
If the initialization is such that |1, o converges to a measure which
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!see paper for precise statement. We also assume boundary conditions,

existence of lim¢_ oo h(ptoo,t), and a technical “Sard-type” non-degeneracy. 7/16



Main result

Objective: ¢ differentiable and bounded, R smooth and convex:

R(J wo(0)du(w,0)) + A [ |w|du

Theorem (Global convergence, informal)
If the initialization is such that |1, o converges to a measure which
support separates {—oco} x © from {+oc0} x ©, then

lim Flume)= min _F
m, tlmoo ( e ) /J,EMn:I(%X@) (Iu)
phim_ J(h(pim,e)) = i J(n).

Remarks
e bad local minima exist, but are avoided if good initialization

e also a statement if ¢ homogeneous and unbounded

!see paper for precise statement. We also assume boundary conditions,

existence of lim¢_ oo h(ptoo,t), and a technical “Sard-type” non-degeneracy. 7/16



lHlustration
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Particle-complexity

What about convex weights minimization ?
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Particle-complexity

What about convex weights minimization ?
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~— particle gradient flow
convex minimization
below optim. error
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(a) Sparse deconvolution (d =1) (b) Neural net (sigmoid, d = 100)
Excess loss at convergence vs nb of particles m.
Simplest minimizer has mg particles. 9/16



Proof arguments




Many-particle limit
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Many-particle limit
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Proposition (Wasserstein gradient flow)

If 1m0 converges to g (in Wasserstein) then (pm ¢): converges to
the unique Wasserstein gradient flow (u¢): of F starting from pyg,
characterized by

Orpr + div(veps) =0 with vy = —VF/'“.

[See also]
Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.
Rotskoff, Vanden-Eijnden (2018). Neural Networks as Interacting Particle Systems. 10/16

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.



Proof technique

e existence and uniqueness through “local” geodesic
semi-convexity and general theory of Ambrosio et al.

e the term of global interaction p — R( [ ¢dpu) is new
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Proof technique
e existence and uniqueness through “local” geodesic
semi-convexity and general theory of Ambrosio et al.

e the term of global interaction p — R( [ ¢dpu) is new

Quadratic loss
When R(f) = 3|/f — £*||? for some f* € F, interpretation as a
system of charged particles with varying charge and interaction

kernel

k((wi,61), (wa, 02)) = wiwa(d(01), #(62)) 7
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— R at p is a function
The velocity of a particle located at u at time t is =V F_(u).

R x ©)

(

The differential of F : M
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Level sets of F,, (a.k.a mean field potential) and particles of ;.



Optimality conditions

Optimality conditions
Global minimizers of F on M (R x ©) are characterized by

F,, > 0 everywhere on R x ©
F/: =0 p-a.e.

Wasserstein gradient flow stationary points

Stationary points of (1) are characterized by VF), =0, p-a.e.

Homogeneity = F, =0, p-a.e.
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Avoiding bad local minima
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Non-optimal stationary point ji and Fj.
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Avoiding bad local minima

COTTTTTTTTIT T T TTT
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Avoided if (arbitrary small) mass of uy, € N (ji) lies in the red set.

Proposition (Escape criterion)

Let fi such that F # 0. There is a neighborhood N'(fi) and a “red
set” (as above) such that:

If wy, € N(fi) and iy, gives mass to the set, then p: subsequently

escapes from N (fi). 14/16



Separation property

Definition (Separation property)
Any continuous path joining {—oc} x ©
to {+00} X © intersects support(p).

Support(g;) in red
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Separation property

Definition (Separation property)
Any continuous path joining {—oc} x ©
to {+00} X © intersects support(p).

Support(g;) in red

Proposition (Stability)
If o satisfies the separation property, so does ji+ for t > 0.
Proof.

e easy if v; is continuous : the flow of characteristics is a diffeo

e otherwise, topological degree theory 0
15/16



Proof conclusion

“Proof” of the main theorem.
If uo satisfies the separation property, then () avoids all bad
local minima. O
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Proof conclusion

“Proof” of the main theorem.

If uo satisfies the separation property, then () avoids all bad
local minima.

O
3
Remarks .

e quite insensitive to the choice of of

metric ? BN

. - -2 =1 0. 1 2 ; a4

e the 2-homogeneous case involves

spherical geometry Training ReLU neural net

with SGD to optimality
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Conclusion
e practical method, global convergence

e non-convex: initialization matters

Perspectives
e quantitative statements

e other models: more than one layer

[Paper] Chizat, Bach (2018). On the Global Convergence of
Over-parameterized Models using Optimal Transport.
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