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A Motivating Problem : Spikes Deconvolution

Blurred and noisy observation of stars on a domain X

(here Dirichlet blurring kernel on the 2-torus)

o Statistics. Is recovery of positions, weights and number of

particles possible? With which estimator?

e Optimization. Can we compute this estimator accurately and

. 2 Thi
efficiently ? ~~This talk, 17




Setting (simplified for this talk)

e ambiant space X’ (compact Riemannian d-manifold)
o observed signal f € L2(X)
o known impulse response ¢(-,-) € C3(X x X)

Optimization problem

o Take m € N particles with weight/position (a,x) € Ry x X
o Parameterize with 6 = ((a1,x1), - .., (am, xm)) € (R4 x X)™
e Find the minimizer (in 6 and m) of

m

Fm(0) = /X (% Z 3ip(x, xi) — f(X))de-l- ;Em:ai
i=1

i=1

Y
Data fitting Regularization
D
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NB: F,, is not convex and admits spurious local minima



Conic Particle Gradient Descent

Algorithm (continuous time version)
e Initialize (x;); uniformly in X’ (at random/on a grid), a; =1

o Compute (6(t))¢>0 by following

%ai(t) = —4ma(t)V, Fr(6(t))
%Xi(t) = —amV, Fn(6(t))

Why multiplicative updates for weights?

Initializing with 6(0) = (ao, xo)
# -

Initializing with
6(0) = ((a0/2, x0), (a0/2, x0))

*
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Summary of results

Let F* := inf,>19 Fm(0) the optimal value

Theorem (Local convergence)

If the problem is non-degenerate, there exists Cp, C; > 0 such that

Fn(0(0) < F*+C = Fn(8(t) — F* < Goe G,

v

Theorem (Global convergence)

If the problem is non-degenerate, there exists C}, C; > 0 such that

a< G

sup inf dist(x, x;(0)) < ¢
XExi:l,...,m

= lim F(6() = F*.

.
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Applications and related algorithms

General problem: Find a of an observed

signal using a

Sampled applications |
e Imaging. Astronomy (2D) [Puschmann 2017], Neuro-imaging with
EEG (3D) [Gramfort 2013], Fluorescence microscopy (3D) [Betzig 2006]

o Machine Learning. 2-layer Relu neural networks, where CPGD
backpropagation, Mixture models fitting [Keriven 2017] [Boyd et al 2015]

Other approaches for optimization on measures |

e Moment methods: parameterize with moments [Lasserre]
e Stochastic algorithms: generalized Langevin dynamics

e Frank-Wolfe: add one particle per iteration [Bredies, 2013]
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Statics: Sparse optimization over measures
Dynamics: Local convergence

Dynamics: Global convergence
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Statics: Sparse optimization over
measures



Formulation over measures

Symmetries lead to a natural reformulation:

1 m
0= (a5, xi)ie1 € (Ry x X)™ = um= m;a,-éxi € M4 (X)

Objective over the space of nonnegative measures M (X)

F =3 [ ([ ober)duty) = F(9) ax+ ()

Data fitting Regularization

Signed case (a; € R)
Basic properties of F

- Flim) = Fn(0) Set {¢ Bk
fi = (pss p—)

~~ regularization by A||fi||Tvy [De
Castro & Gamboa, 2012] 6/17

- convex

- admits a minimizer p*




Sparsity and optimality

Assumption 1 (Uniqueness)

. . . . . . . [
There exists a unique minimizer which is sparse: p* =" afdyx.
- 1

Let V[u] € C3(X) be the first variation of F at y, characterized by

F(p+ev) = F(,u)+6/X V[ul(x)dv(x)+o(e), Vv e M(X) adm.

Proposition (Optimality conditions)

The first variation of F at p* satisfies
V)20 and spt(a*) = £, ..., xpe b € {V[u'] = 0}.

' vyl
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Non-degeneracy

Definition (Interaction kernels)

Global interaction kernel K € R(™"(4+1)* (convention Voo = 26):

I,_j ), (i \/>v qb Xj 7' ?\/;;(’vj/gb(x;;? ')>L2

Local interaction kernel H = diag(H;)™, € R (d+1))* with

Hj = V2V[u*](x7)

Definition (Non—degeneracy) Can be guaranteed a priori
We say that F is non-degenerate iff: under spikes separation &
e K>0 noise level conditions [Duval
o argmin V[,u*] _ {Xf7 o ,X;;,*} & Peyré, 2015] [Poon et al, 2019]

. Akiyama & Suzuki, 2021
e Hi>~0,ie{l,...,m} [ )
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Non-degeneracy vs. stability

Unbalanced L,-Wasserstein metric (e.g. [Liero et al. 2020])
Define, for p,v € M (X):

W (,v) = min KL () + KL(l) + [ c(x.y)d(x.)

where v € M (X x X) has marginals 71,72 and c(x, y) = dist(x, y)?/a?

Theorem (stability)

F is non-degenerate
=
3Co, G > 0s.t. Fp) — F* < Co = W(p, p*) < Gi(F(p) — F*)

The opposite inequality /V\722(,u, w) > C’(F(u) — F*) holds, hence:

F(p) — F* small < p close to pu* J
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Back to dynamics

Using the first-variation V/, conic particle gradient descent solves:

%ai(t) = —4ma;(t)V]pe](xi(t))
() = —omV VI (x(1)

where 1y == % Z:n:l a;(t)éxf(t) € M.:,.(X)

Proposition (Dynamics in the space of measures)

The curve (u¢): solves (distributionally) the PDE:

Oepr = aV - (e V'V [pe]) — e V1]
——

Drift Reaction

This is the gradient flow of F under the metric Wa.
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Dynamics: Local convergence




Energy dissipation

Let f : RY — R a smooth function and x : R, — R? a gradient
flow of f, i.e.

—x(t) = —=Vf(x(t)), Vt>0

Energy dissipation formula: Euclidean case

%f(X(t)) = Vi(x(1)'x'(t) = —[VF(x(t)]?

In our context, let

IV, F ()12 r=/X(OéHVV[u](X)HZ+4|V[u](><)\2) dp(x)

Proposition (Energy dissipation for (1))




Main local convergence result

Theorem (A tojasiewicz gradient inequality)

F is non-degenerate
=
3G, Gt > 0sit. F(u) = F* < Co = ||V Flull? > G(F(p) — F*)

If F is non-degenerate then there exists Cp, C; > 0 such that
F(uo) — F* < Co = F(ue) — F* < Ge 9t

Proof.
d * *
E(F(“t) — F) = =V, Flue I < =G (F(pe) = F¥)

and we conclude by integrating in time. O
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Proof idea and local expansion

Decompose p into local moments M4
in small balls B; around each x;:

e local biases b; € R9+1

e local covariances ¥; € R9*d

*

1 m
F(p)— F*~ =Zb"(K+H)b + Zaitr(Z;H;) +/ V'] dp
2 =il X\(UB))
Bias term (local+global)  Variance term (local) Mass sent to 0
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Dynamics: Global convergence




Convergence with fixed grid (o = 0)

Consider an infinitely dense grid. What are the convergence rates?
Proposition (Convergence rate, multiplicative updates) |

Let and . It holds F(ue) — F* < '8

t

e proof via mirror descent + approximation argument
e in practice discretization error quickly takes over
e compare with the L2 gradient flow:

Proposition (Convergence rate, additive updates) |

Let and . If F is non-degenerate, then

See [Chizat, 2021] for a complete analysis of convergence rates.
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Global convergence

Theorem (Global convergence)

If the problem is non-degenerate, there exists Cj, C; > 0 such that

a< G
sup inf dist(x, x;(0)) < ¢

XEX ’:17"'7m

= lim Fn(0() = F*.

—— additive updates
—— multiplicative updates
—— conic particle GD

--- fixed grid error

Suboptimality gap

0 50 100 150 200
niter
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. l/x/:lh\/\ujl
A\,E*/\

TI\\'A

Signed 1D spikes deconvolution: trajectory of pu
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Concluding remarks

e Extensions
We focused on GD but one could explore more advanced
algorithms (pre-conditioning, acceleration, SGD)

e Curse of dimensionality
The guarantees require exp(d) particles, which is unavoidable
under our assumptions.

e Can we change assumptions?

e dealing with the degenerate case (see [Zhou, Ge, Jin, 2021])
e dealing with non-sparse minimizers (open)
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