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A Motivating Problem : Spikes Deconvolution

Blurred and noisy observation of stars on a domain X
(here Dirichlet blurring kernel on the 2-torus)

Questions

• Statistics. Is recovery of positions, weights and number of

particles possible? With which estimator?

• Optimization. Can we compute this estimator accurately and

efficiently ?  This talk.
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Estimator

Setting (simplified for this talk)

• ambiant space X (compact Riemannian d-manifold)

• observed signal f ∈ L2(X )

• known impulse response φ(·, ·) ∈ C3(X × X )

Optimization problem

• Take m ∈ N particles with weight/position (a, x) ∈ R+ ×X
• Parameterize with θ =

(
(a1, x1), . . . , (am, xm)

)
∈ (R+ ×X )m

• Find the minimizer (in θ and m) of

Fm(θ) :=

∫
X

( 1

m

m∑
i=1

aiφ(x , xi )− f (x)
)2

dx︸ ︷︷ ︸
Data fitting

+
λ

m

m∑
i=1

ai︸ ︷︷ ︸
Regularization

NB: Fm is not convex and admits spurious local minima 2/17



Conic Particle Gradient Descent

Algorithm (continuous time version)

• Initialize (xi )i uniformly in X (at random/on a grid), ai = 1

• Compute (θ(t))t≥0 by following
d

dt
ai (t) = −4mai (t)∇aiFm(θ(t))

d

dt
xi (t) = −αm∇xiFm(θ(t))

Why multiplicative updates for weights?

Initializing with θ(0) = (a0, x0)

⇔
Initializing with

θ(0) = ((a0/2, x0), (a0/2, x0))
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Summary of results

Let F ∗ := infm≥1,θ Fm(θ) the optimal value

Theorem (Local convergence)

If the problem is non-degenerate, there exists C0,C1 > 0 such that

Fm(θ(0)) ≤ F ∗ + C0 ⇒ Fm(θ(t))− F ∗ ≤ C0e
−C1t .

Theorem (Global convergence)

If the problem is non-degenerate, there exists C ′0,C
′
1 > 0 such that α ≤ C ′0

sup
x∈X

inf
i=1,...,m

dist(x , xi (0)) ≤ C ′1
⇒ lim

t→∞
Fm(θ(t)) = F ∗.
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Applications and related algorithms

General problem: Find a sparse decomposition of an observed

signal using a smoothly parameterized dictionary

Sampled applications

• Imaging. Astronomy (2D) [Puschmann 2017], Neuro-imaging with

EEG (3D) [Gramfort 2013], Fluorescence microscopy (3D) [Betzig 2006]

• Machine Learning. 2-layer Relu neural networks, where CPGD ⇔

backpropagation, Mixture models fitting [Keriven 2017] [Boyd et al 2015]

Other approaches for optimization on measures

• Moment methods: parameterize with moments [Lasserre]

• Stochastic algorithms: generalized Langevin dynamics

• Frank-Wolfe: add one particle per iteration [Bredies, 2013]
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Outline

Statics: Sparse optimization over measures

Dynamics: Local convergence

Dynamics: Global convergence
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Statics: Sparse optimization over

measures



Formulation over measures

Symmetries lead to a natural reformulation:

θ = (ai , xi )
m
i=1 ∈ (R+ ×X )m ⇒ µm :=

1

m

m∑
i=1

aiδxi ∈M+(X )

Objective over the space of nonnegative measures M+(X )

F (µ) =
1

2

∫
X

(∫
X
φ(x , y)dµ(y)− f (x)

)2
dx︸ ︷︷ ︸

Data fitting

+ λµ(X )︸ ︷︷ ︸
Regularization

Basic properties of F

- F (µm) = Fm(θ)

- convex

- admits a minimizer µ∗

Signed case (ai ∈ R)

Set

{
φ̃ = (+φ,−φ)

µ̃ = (µ+, µ−)

 regularization by λ‖µ̃‖TV [De

Castro & Gamboa, 2012] 6/17



Sparsity and optimality

Assumption 1 (Uniqueness)

There exists a unique minimizer which is sparse: µ∗ =
∑m∗

i=1 a
∗
i δx∗i .

Let V [µ] ∈ C3(X ) be the first variation of F at µ, characterized by

F (µ+εν) = F (µ)+ε

∫
X
V [µ](x)dν(x)+o(ε), ∀ν ∈M(X ) adm.

Proposition (Optimality conditions)

The first variation of F at µ∗ satisfies

V [µ∗] ≥ 0 and spt(µ∗) = {x∗1 , . . . , x∗m∗} ⊂ {V [µ∗] = 0}.
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Non-degeneracy

Definition (Interaction kernels)

Global interaction kernel K ∈ R(m∗(d+1))2
(convention ∇0φ = 2φ):

K(i ,j),(i ′,j ′) = 〈
√
a∗i ∇jφ(x∗i , ·),

√
a∗i ′∇j ′φ(x∗i ′ , ·)〉L2

Local interaction kernel H = diag(Hi )
m∗
i=1 ∈ R(m∗(d+1))2

with

Hi := ∇2V [µ∗](x∗i )

Definition (Non-degeneracy)

We say that F is non-degenerate iff:

• K � 0

• arg minV [µ∗] = {x∗1 , . . . , x∗m∗}
• Hi � 0, i ∈ {1, . . . ,m∗}

Can be guaranteed a priori

under spikes separation &

noise level conditions [Duval

& Peyré, 2015] [Poon et al, 2019]

[Akiyama & Suzuki, 2021]
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Non-degeneracy vs. stability

Unbalanced L2-Wasserstein metric (e.g. [Liero et al. 2020])

Define, for µ, ν ∈M+(X ):

Ŵ 2
2 (µ, ν) := min

γ
KL(γ1|µ) + KL(γ2|ν) +

∫
c(x , y)dγ(x , y)

where γ ∈M+(X ×X ) has marginals γ1, γ2 and c(x , y) ≈ dist(x , y)2/α2

Theorem (stability)

F is non-degenerate

⇒
∃C0,C1 > 0 s.t. F (µ)− F ∗ ≤ C0 ⇒ Ŵ 2

2 (µ, µ∗) ≤ C1

(
F (µ)− F ∗

)
The opposite inequality Ŵ 2

2 (µ, µ∗) ≥ C ′
(
F (µ)− F ∗

)
holds, hence:

F (µ)− F ∗ small ⇔ µ close to µ∗
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Back to dynamics

Using the first-variation V , conic particle gradient descent solves:
d

dt
ai (t) = −4mai (t)V [µt ](xi (t))

d

dt
xi (t) = −αm∇V [µt ](xi (t))

where µt := 1
m

∑m
i=1 ai (t)δxi (t) ∈M+(X ).

Proposition (Dynamics in the space of measures)

The curve (µt)t solves (distributionally) the PDE:

∂tµt = α∇ ·
(
µt∇V [µt ]

)︸ ︷︷ ︸
Drift

− 4µtV [µt ]︸ ︷︷ ︸
Reaction

This is the gradient flow of F under the metric Ŵ2.
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Dynamics: Local convergence



Energy dissipation

Let f : Rd → R a smooth function and x : R+ → Rd a gradient

flow of f , i.e.
d

dt
x(t) = −∇f (x(t)), ∀t ≥ 0

Energy dissipation formula: Euclidean case

d

dt
f (x(t)) = ∇f (x(t))>x ′(t) = −‖∇f (x(t))‖2

In our context, let

‖∇
Ŵ2

F (µ)‖2 :=

∫
X

(
α‖∇V [µ](x)‖2 + 4|V [µ](x)|2

)
dµ(x)

Proposition (Energy dissipation for (µt)t)

d

dt
F (µt) = −‖∇

Ŵ2
F (µt)‖2
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Main local convergence result

Theorem (A  Lojasiewicz gradient inequality)

F is non-degenerate

⇒
∃C0,C1 > 0 s.t. F (µ)−F ∗ < C0 ⇒ ‖∇Ŵ2

F [µ]‖2 ≥ C1(F (µ)−F ∗)

Corollary

If F is non-degenerate then there exists C0,C1 > 0 such that

F (µ0)− F ∗ ≤ C0 ⇒ F (µt)− F ∗ ≤ C0e
−C1t .

Proof.

d

dt

(
F (µt)− F ∗

)
= −‖∇

Ŵ2
F [µt ]‖2 ≤ −C1

(
F (µt)− F ∗

)
and we conclude by integrating in time.
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Proof idea and local expansion

Decompose µ into local moments

in small balls Bi around each x∗i :

• local biases bi ∈ Rd+1

• local covariances Σi ∈ Rd×d

Local Taylor expansion of F around µ∗

F (µ)− F ∗ ≈ 1

2
bᵀ(K + H)b︸ ︷︷ ︸

Bias term (local+global)

+
m∗∑
i=1

ai tr(ΣiHi )︸ ︷︷ ︸
Variance term (local)

+

∫
X\(∪Bi )

V [µ∗] dµ︸ ︷︷ ︸
Mass sent to 0
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Dynamics: Global convergence



Convergence with fixed grid (α = 0)

Consider an infinitely dense grid. What are the convergence rates?

Proposition (Convergence rate, multiplicative updates)

Let µ0 ∝ vol and ∂tµt = −4µtV [µt ]. It holds F (µt)− F ∗ . log(t)
t .

• proof via mirror descent + approximation argument

• in practice discretization error quickly takes over

• compare with the L2 gradient flow:

Proposition (Convergence rate, additive updates)

Let µ0 ∝ vol and ∂tµt = −V [µt ]vol. If F is non-degenerate, then

F (µt)− F ∗ � t−2/(d+2).

See [Chizat, 2021] for a complete analysis of convergence rates.
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Global convergence

Theorem (Global convergence)

If the problem is non-degenerate, there exists C ′0,C
′
1 > 0 such that α ≤ C ′0

sup
x∈X

inf
i=1,...,m

dist(x , xi (0)) ≤ C ′1
⇒ lim

t→∞
Fm(θ(t)) = F ∗.
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An illustration

0

Signed 1D spikes deconvolution: trajectory of µt
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Concluding remarks

• Extensions

We focused on GD but one could explore more advanced

algorithms (pre-conditioning, acceleration, SGD)

• Curse of dimensionality

The guarantees require exp(d) particles, which is unavoidable

under our assumptions.

• Can we change assumptions?

• dealing with the degenerate case (see [Zhou, Ge, Jin, 2021])

• dealing with non-sparse minimizers (open)
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